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Abstract

Large language models have the potential to simplify formal theorem proving and make
it more accessible. But how to get the most out of these models is still an open question.
To answer this question, we take a step back and explore the failure cases of these models
using common prompting-based techniques. Our talk will discuss these failure cases and
what they can teach us about how to get more out of these models.

Introduction Formal theorem proving is a crucial but challenging task—and a natural fit
for automation. Historically, most work on formal proof automation has relied on symbolic
techniques [8], sometimes combined with neural tools [2, 7, 12, 6, 4, 3]. Recent advances in large
language models have improved their instruction-following and in-context learning capabilities,
making it possible to build powerful proof automation that elides symbolic search procedures
altogether, as shown by Baldur [5].

How can we get more out of these advances in large language models? To answer that, we
examine the capabilities of the state-of-the-art language models GPT-3.5 Turbo and GPT-4 to
prove theorems in Coq using common prompting-based techniques. In particular, we conduct
a fine-grained analysis of model outputs on an example project. Our emphasis is on the failure
cases—how these outputs commonly go wrong, and what that can teach us about how to get
more out of these models.

GPT-3.5-Turbo GPT-4 Proverbot

FS-rand FS-sim ZS FS-rand FS-sim ZS FS+Lem ZS+Lem -

#Correct Proof 10 8 0 7 8 0 14 9 -
#Proven Theorems 6 4 0 6 7 0 7 5 23

Table 1: Results. ‘FS’ stands for ‘few-shot’, ‘ZS’ stands for ‘zero-shot’. ‘+lemma’ ’denotes
providing lemmas preceding the query theorem in the file in the context.

Results and Recommendations We performed fine-grained analysis of the model-generated
proofs and categorized the comments of human experts in Figure 1a. Details about our exper-
imental methodology, along with examples, are in the appendix. Our recommendations:

1. Allow the model to prompt the proof assistant for more information. Model
outputs sometimes ask for more information about the definitions of referenced variables when
those definitions have not been provided as input as shown in Figure 1c and Appendix C.1.
This opens up a perfect opportunity for tool use at the model’s request. By prompting the
model to ask for information using standard Coq commands like Print, and executing them in
real time, we can allow the model to obtain information as it generates proof in steps.

2. Give the model access to proof states. Language models are found to be weak at
‘execution’. In our case, they by default lack access to proof state. This manifests in outputs
as incorrect assumptions about the current proof state, like introducing too many variables
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(a) Breakdown of 740 expert-
annotated GPT-4 outputs under
few-shot ‘theorem-proof’ set-up (see
Appendix A.2 for more).

Proof. 
intros R n x H. 
destruct H as [y [H1 H2]].
apply UExp_S; exists y. 
split; assumption.

Prove the following theorem in Coq:
Let HBGGn: forall R n, incl 
(comp (star B) (UExp G R n)) 
(UExp G R (S n)).

Error: "R is already used."

(b) An example output
that incurs an error be-
cause model lacks local
proof state, and so uses
variable name R that is
already taken. See Ap-
pendix C.4 for full context.

Prove the following theorem in Coq:
Lemma G_wmon: wmonotonic TX TX G.

(* Without further 
information on what TX and G 
are, I cannot generate a 
valid proof. Please provide 
more information or define 
the related functions and 
types. *)

(c) An example output
that recognizes the neces-
sary definitions are not pro-
vided and asks for clarifica-
tions from the user. See Ap-
pendix C.1 for more.

or overloading variables already used (see Figure 1b and Appendix C.4). For human proof
engineers, interactive proof is more like a conversation with the proof assistant with constant
feedback on the state; emulating this is a perfect opportunity to put the chat API to good use.

3. Give the model access to information in file dependencies. Naively prompted
models produce outputs that make incorrect assumptions about definitions and lemmas from
dependencies, for example by hallucinating lemma names (see Appendix C.6), or by attempting
to induct over a non-inductive hypothesis. Human proof engineers avoid this by having access
to dependencies directly; models should access to those dependencies in context or in memory.

4. Give the model access to proofs preceding the current proof. Naively prompted
models fail to solve proofs that would be obvious from context, since human-written proofs
are often small permutations of earlier proofs. Baldur [5] showed in-context learning can help
with this in Isabelle/HOL; we now have evidence (see Appendix C.5) this is worth trying in Coq.

5. Learn from errors. People have attempted to iteratively improve the quality of gen-
erated programs by providing the model with correctness signals as feedback [13, 10]; the same
has shown success for proofs in Isabelle/HOL [5]. The error messages we observed were very
informative,1 and suggest this may be fruitful in Coq as well.

6. Introduce diversity through prompt engineering. It has been observed that a mixture
of experts can boost performance of ML-guided proof synthesis by performing diverse sequences
of tactics [3]. On the other hand, there is evidence of performance gain by introducing diversity
in few-shot set-up for both synthesis [1] and reasoning [11] tasks from the language modeling
research community. The diversity we have already observed (see Appendix B) is evidence this
may be worth trying with different prompts for Coq proofs.

Proposed Talk In our talk, we will discuss specific examples of these failure cases, how
they correspond to our recommendations, and our progress on experimentation along these
recommendations in the intervening months.

1Our annotated data with errors is available here: https://github.com/DylanZSZ/LLM4Proof.git
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A Methodology

We experimented with both zero-shot and few-shot prompting methods with & without pre-
ceding lemmas of the query theorem. To select few-shot samples, we experimented with two
strategies: random selection and similarity based selection using a retrieval model we fine-tuned
on the training set. The details are deferred to appendix.

A.1 Zero-Shot Prompting

The notable characteristic of GPT-3.5 Turbo and GPT-4 is their robust ability to follow in-
structions. In a zero-shot configuration, we leverage the system’s messaging to establish the
task and desired output format for the entire conversation, while utilizing user messaging to
provide query-specific information such as the theorem to be proven and relevant lemmas.
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“examples”:
[
{‘q1’:xxx,’a1’:xxx},
…
{‘q1’:xxx,’a1’:xxx},
]

“question”: ‘theorem-to-prove’
…

CoqGym Dataset Prompt Engineering Response Generation

Execution 

Expert Analysis

Figure 2: Investigation Pipeline

Example Theorem 1

Example   Proof     1

Example Theorem K

Example   Proof     K

Few-shot examples from other projects

Generate proof of the theorem from user 
input in Coq. You should only generate 
proofs in Coq.

System Message

Theorem in Test Project To Be Proven

……

Figure 3: Workflow of
few-shot prompting

Prove the following theorem in Coq:
Lemma UExp_UExp: forall R m n, 
UExp F (UExp F R n) m = UExp F 
R (m+n).

Proof.
intros R m n. 
induction m. 
{ simpl. auto. } 
{ simpl. rewrite -> IHm. 
reflexivity. }
Qed.

Figure 4: Few-shot example format of
Theorem-Proof setting.

Prove the following theorem in Coq:
Lemma UExp_UExp: forall R m n, 
UExp F (UExp F R n) m = UExp F 
R (m+n).
Below are the useful lemmas.
{Lemmas Preceding The Target 
Theorem To Be Proven. }

Proof.
{Some Proof}
Qed.

Figure 5: Few-shot example format of
Theorem with Given Lemma setting.

A.2 Few-Shot Prompting

Our approach utilizes the conventional few-shot in-context learning method. We include ex-
amples in the form of theorem-proof tuples at the beginning of the target query as shown in
Figure 3. In addition to the description of the task in the initial system message and the query,
we provide examples of query-answer pairs obtained from training set to demonstrate to the
model the task we want it to perform and the expected output format. We experimented with
a few variants:

Theorem-Proof In this set-up, we provide examples of pairs of theorems and proofs, as
illustrated in Figure 4.

Theorem with Given Lemmas In this setting, we provide the model with the names of
lemmas preceding the theorem. The format is shown in Figure 5.

A.3 Training of Retriever

We perform continued fine-tuning from the sentence-transformer model all-mpnet-base-v2
based on[9]. In particular, this model has been trained on code corpus and has certain level
of code-understanding capabilities. We train the model to perform similar proof search on the
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train set by minimizing the triplet objective

J =
∑

m
i=1Ltriplet(Ti, Pi, Pj ̸=i) (1)

where Ti is the query theorem,Pi is the proof of this theorem and Pj is a randomly sampled
proof of another theorem. During retrieval, we compute the similarity scores between test
theorems and proofs in the training set, ans use those theorems whose proofs are similar to the
test instance as the few-shot examples.

A.4 Experiment Set-up

We conducted experiments to evaluate the performance of two language models, GPT-3.5-turbo
and GPT4, under both few-shot and zero-shot settings. The few-shot learning was performed
with k-shots=6, meaning that the models were trained on only six examples per class.

The hyperparameters used for both models were set as follows: temperature T=1,presence
penalty=0.1, number of samples per prompt n=5. presence penalty is a penalty term applied
to the logit values of tokens already present in the prompt to discourage the repetition of those
tokens in the generated text.

B Coinciding proofs solved

Table 2: Number of coinciding theorems proven successfully by each pair of prompting set-ups.

GPT4-random-fs GPT3.5-random-fs GPT4-sim-fs GPT3.5-sim-fs GPT4-lemma-fs GPT4-lemma-zs

GPT4-random-fs - - - - -
GPT3.5-random-fs 1 - - - - -
GPT4-sim-fs 1 2 - - - -
GPT3.5-sim-fs 0 3 1 - - -
GPT4-lemma-fs 2 1 1 0 - -
GPT4-lemma-zs 1 1 1 0 3 -

Proof synthesis is a special task in nature, having similarities with code-synthesis where both
being generative, but still different as the criteria of whether or not the target theorem is proved
is close-ended to a certain extent.

C Example Outputs

C.1 Refusing To Answer

Lemma G_wmon: wmonotonic TX TX G.
(* Without further information on what TX and G are, I cannot generate a valid

proof. Please provide more information or define the related functions and
types. *)

Even under few-shot set-up where the model output is restricted to be in Coq format, the
model insists on requesting additional information on the variables not clearly defined. It is
impressive that the model has certain level of ability to understand Coq as well as the necessary
information to complete the proof, e.g. the definition of variable names ans assumptions. This
category constitutes 5.4% of total number of cases.
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C.2 Not Trying Simple Tactics

Lemma trans_incl: incl R R’ -> incl (trans R) (trans R’).

This is an easy theorem which model has failed. In particular, to prove this, a simple auto.
tactic will do. However, the model did not give this tactic a try.

Lemma trans_incl: incl R R’ -> incl (trans R) (trans R’).
Proof.
auto.

Qed.

This is a case where all of context, proof state, and dependency information may help. It is also
a case where diverse prompting may be useful (for example, by adding a prompt that favors
very simple proofs that do not use any lemmas).

C.3 Succeeding

There are certain cases where the model succeeded in proving the theorems. These theorems
generally do not depend much on context. For example, the model-generated proof of weak_refl
succeeds using only simple tactics:

Lemma weak_refl: forall x, Weak T x x.
Proof.
intros x.
constructor.
reflexivity.

Qed.

C.4 Lacking the Proof State

Here we provide the proof state of the example in the main text before the step in Figure 1b:

A, X, Y : Type
TX : reduction_t A X
TY : reduction_t A Y
B : relation X
HB : controlled TX TY B
F, G : function X Y
HF : monotonic TX TY F
HG : wmonotonic TX TY G
HBF : transparent B F
HFG : contains F G
HBG : contains (chaining_l (star B)) G
R : relation2 X Y
HRt : evolve_t TX TY R (comp (star B) (F R))
HRa : evolve_a TX TY R (G R)
pre_silent :
forall n : nat,
evolve_t TX TY (UExp F R n) (comp (star B) (UExp F R (S n)))

silent : simulation_t TX TY (comp (star B) (UIter F R))
HFGn : forall n : nat, incl (UExp F R n) (UExp G R n)
______________________________________(1/1)
forall (R0 : relation2 X Y) (n : nat),
incl (comp (star B) (UExp G R0 n)) (UExp G R0 (S n))

6
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Note the proof assistant renamed the R in the goal into R0 because there is another R in context
from earlier in the file.2 Coq chooses R0 so as not to shadow R. Similarly, the human proof calls
this RR to avoid shadowing R:

intros RR n x y H; right; apply (HBG H).

In contrast, without any access to the fact that R is already defined the local proof state, the
model output attempts to introduce a new variable named R. Coq refuses and responds with
an error.

Another place where proof state is useful is when the model introduces more variables than
can be introduced. For example, the model generates this output:

Lemma G_reverse: forall R, eeq (trans (G R)) (G (trans R)).
Proof.
unfold G, eeq.
intros R u v.
destruct R as [R Hr].
simpl.
split; intros [r H]; cbn in *; exists r;
rewrite <- Hr in *;
auto using sym_equal, trans_sym with relations.

The second step, intros R u v, assumes there are three variables to introduce. This would be
reasonable if unfolding G and eeq introduced more foralls in the goal of the proof state after
the first step. But it does not; the local proof state at that step includes only one variable R to
introduce. Coq thus responds with an error.

C.5 Lacking Local Context

Writing proofs is often easier with context, since proofs often mirror preceding proofs in the
same file. For example, proving this lemma is easier with context:

Lemma union_incl: (forall i, incl (F i) (F’ i)) -> incl (union F) (union F’).

This is because the human-written proofs preceding it in the file very much mirror the human-
written proof of this lemma:

Lemma comp_incl: incl R R’ -> incl S S’ -> incl (comp R S) (comp R’ S’).
Proof.
unfold eeq, comp, incl; intuition.
destruct H1 as [ t ]; exists t; auto.

Qed.

Lemma comp_eeq: eeq R R’ -> eeq S S’ -> eeq (comp R S) (comp R’ S’).
Proof.
unfold eeq, comp, incl; intuition;
destruct H0 as [ t ]; exists t; auto.

Qed.

Lemma union_incl: (forall i, incl (F i) (F’ i)) -> incl (union F) (union F’).
Proof.
unfold eeq, union, incl; intuition.
destruct H0 as [ i ]; exists i; auto.

Qed.

2Coq makes it possible to generalize all proofs in a Section by the same pre-defined parameters, and one
such parameter here is named R.
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The same holds for the proof of union2_evolve_right:

Lemma union2_evolve_left:
forall l R S S’, evolve_1 l R S -> evolve_1 l R (union2 S S’).

Proof.
intros l R S S’ H x x’ y Hxx’ xRy; destruct (H _ _ _ Hxx’ xRy) as [ y’ ];
exists y’; auto; left; auto.

Qed.

Lemma union2_evolve_right:
forall l R S S’, evolve_1 l R S’ -> evolve_1 l R (union2 S S’).

Proof.
intros l R S S’ H x x’ y Hxx’ xRy; destruct (H _ _ _ Hxx’ xRy) as [ y’ ];
exists y’; auto; right; auto.

Qed.

This gives us evidence that in-context learning in the style of Baldur may be fruitful in Coq as
well.

C.6 Hallucination

Below is an example from the model where it hallucinates H which has been defined nowhere.
We observe in many cases the model are directly using the commonly used variable names like
H, x, y which it has seen multiple times during pre-training.

Lemma bisimulation_bisim: bisimulation bisim.
Proof.
constructor.
- intros.
destruct H as [s’ H].
exists s’.
apply stutter_bisim in H.
auto.

Moreover, it hallucinates lemmas or definitions in the proofs, like stutter_bisim. By providing
proof state, we can help the model pick more correct variables; by providing file dependencies
that contain referenced definitions and auxiliary lemmas, and prompting the model to restrict
itself to those, we can help the model use only the definitions and lemmas that exist already.
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