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Abstract

We experiment with a transformer model (BART) to investigate its capabilities for
learning reasoning in propositional logic from data. Previous work has highlighted the
pitfalls when trying to solve this with a classifier: it tends to learn spurious correlations of
the dataset, not reasoning. Here, we augment the data with proof steps, and demonstrate
that generative models trained fine-tuned on proofs better approximate logical reasoning,
also on out-of-distribution data.

1 Introduction

Language models are now being applied to tasks beyond pure generation of text [1, 9]. The
ability to reason logically, and produce proofs is one such task [10]. However, it is not always
clear if this emerging functionality really corresponds to a model having learnt logical reasoning,
or if it is simply picking up on some other pattern in the data, that seemingly allows it to
solve reasoning tasks. It has for instance been shown that inducing large language models to
”reason step by step” (via the prompt or by emitting intermediate steps) improves results on
reasoning tasks [3, 5, 6, 8, 12, 11]. So, why does this step-by-step reasoning work? What are
the features used here, compared to otherwise? When can we be confident that the model
does reasoning, rather than picking up on some other relationship? Prystawski and Goodman
investigates this in the context of Bayesian inference [7]. They find that step-by-step reasoning
works when concepts not appearing close together in the training data can be linked together
by concepts that do. We are interested in studying this in the context of logic reasoning, and
take as a starting point the work by Zhang et al. [13]. They showed that the performance of a
classifier BERT model [2], trained to accurately predict if problems in propositional logic were
satisfiable (or not), turns out to have learnt spurious correlations arising from characteristics of
the problem set (e.g. the number of rules). Faced with problems from a different distribution it
failed miserably. We instead train two generative seq-to-seq BART [4] models in two different
ways: 1) producing a short proof in one go, and 2) sequentially producing the next proof step,
given the problem state. The one-go method gives mixed results, while next-rule prediction
applied in a step-by-step fashion produces near-perfect cross-distribution accuracy.

2 Data and Model

The SimpleLogic dataset consists of 860 000 propositional logic problems [13]. Each problem
includes a query literal, a list of facts (positive literals) and a list of rules represented as Horn
clauses with 1 - 3 premises. SimpleLogic problems are divided into three distributions based
on the strategy employed to generate them: Label Priority (LP), Rule Priority (RP), and a
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balanced version of RP (RP b). RP for instance, has a potentially spurious feature where
the number of rules is higher for queries that hold, while RP b was designed to remove this
correlation. For our experiments, we augmented these datasets with proofs in order to train and
evaluate the models. Using the augmented datatset, we then trained two models starting from
a pre-trained BART model: the first simply generates a whole candidate proof string in one go,
and is called Whole Proof-BART (WP-BART), while the second is based on a neuro-symbolic
architecture, and is called Symbolic Iterative Proof-BART (SIP-BART). The SIP-BART model
was designed following the idea of chain-of-thought prompting for logical tasks [6, 12]. Here,
the BART model is trained to produce the next proof step in an iterative manner resembling
forward-chaining, which is then passed to a symbolic module which process the generated output
to create a new input state, being passed back to the neural part. The processed stops when
either the proof is complete, or the search space has been exhausted. We hypothesise that
these methods would force the models to learn more relevant features, and avoid short-cutting
reasoning by learning spurious correlations between the problem presentation and the truth
value of the query.

Three versions of each model was trained, one for each of the subsets LP, RP and RP b,
and then tested on test sets from each to detect how well each model generalised. Results are
reported in relation to problem depth. The minimum depth of 0 means that no rule is required
to solve the problem. Deeper problems requires a longer chain of rules that are dependent on
other rules in order to prove the truth-value of the query. In SimpleLogic, the maximum depth
of a problem is 6.

3 Results and Conclusions

The models are evaluated on the accuracy of the generated label (is the query true or false).
We first compare our models with that of Zhang et al. [13] to assess if training also on proofs
improve out of distribution performance. We here simply compare the models’ accuracy on
determining whether a problem is satisfiable or not, as the model in [13] does not produce
proofs. Results are show in Tables 1-3 in Appendix A.

The mean accuracy of WP-BART did not improve from the result achieved by Zhang et al.
However, there was an improvement on out of distribution (OOD) problems requiring longer
proofs. Our results suggest that WP-BART does not pick up spurious statistical features to
the same extent. It performs somewhat better OOD, and also does show less variability going
from problems with shallow to deep proofs, and also less variability when generalizing to other
distibutions, as seen in Table 2 in Appendix A. It also shows similar accuracies on RP and R b
in contrast to the models trained by Zhang et al.

SIP-BART on the other hand, achieved a near-perfect accuracy across all distributions, and
only did marginally worse on OOD problems, as seen in Table 3 in Appendix A. The accuracy is
high even on deeper problems, with a minimum accuracy of 98.7 % on depth six. This step-by-
step approach seems able to generalize well to other distributions, which suggests that it is able
to approximate reasoning better than the other model-variants. Furthermore the consistency
of the proofs generated by SIP-BART are almost perfect. The few errors that occur can be
divided into four different types, which all relate to the fact that we are using a pre-trained
transformer model for natural language on a reasoning task:

• Non-existing Rule: The neural part produce a rule that does not exist in the problem
description. This may happen because it accidentally replaces a word for a synonym, or
misses a premise of a rule.
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• Inapplicable Rule: The model has mistaken the conclusion of a rule for a fact, likely as
facts are listed immediately after the rule in the input string.

• Unexhausted Search Space: The model prematurely concludes that the query is false,
before exhausting the search space.

• Spurious Match: The model proves the wrong query by mixing it up with a synonymous
word.

To summarise, the effect of learning spurious correlations for determining the validity of a
propositional logic problem, identified by Zhang et al. [13], seem to be reduced by training the
model on not only the problem description, but also on associated proofs. Already WP-BART,
which is trained on whole proofs, seem to perform better out of distribution. For SIP-BART,
the effect of these spurious correlations all but disappears, as evident in its capability to solve
the problems of bigger depths. While we cannot fully rule out other unknown correlations,
our results are consistent with prior work on step-by-step reasoning, and the hypothesis put
forward in [7]: that adding step-wise inferences help the model learn how to connect also distant
concepts in the training data. We also identify four new types of errors that still occur in SIP-
BART. All are related to using a pre-trained transformer language model to do reasoning -
none would appear in a symbolic theorem prover. We believe these types of errors are worth
being aware of, as transformers are increasingly being applied to natural language tasks also
involving logical reasoning.
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Appendix A

Train Test 0 1 2 3 4 5 6 Mean
RP RP 99.8 100.0 99.4 98.9 98.6 96.9 95.9 98.5
RP LP 99.9 99.9 99.0 94.3 83.8 65.6 50.0 84.7
RP RP b 99.2 99.2 98.6 98.0 96.6 93.9 89.1 96.4
LP RP 97.4 92.5 64.5 60.2 67.6 72.6 69.9 75.0
LP LP 99.8 99.8 99.8 99.6 98.8 97.2 95.4 98.6
LP RP b 97.7 93.3 60.2 56.7 63.9 68.7 68.5 72.7

RP b RP 99.8 99.9 99.5 98.9 98.6 97.9 96.9 98.8
RP b LP 99.7 99.4 99.3 96.4 87.6 72.6 57.2 87.5
RP b RP b 99.6 99.5 99.0 98.4 98.0 96.7 94.1 97.9

Table 1: Accuracies from the Zhang et al. [13] BERT model. The integers refer to the depth
of the ground-truth proof. Mean is the average across all depths.

Train Test 0 1 2 3 4 5 6 Mean
LP LP 100.0 100.0 92.6 90.2 89.8 91.2 93.3 93.9
LP RP 100.0 99.9 83.3 65.5 67.3 72.0 76.5 80.6
LP RP b 100.0 99.9 82.1 64.9 66.3 74.0 83.0 81.4
RP LP 84.7 85.4 79.2 73.9 71.6 68.5 63.4 75.2
RP RP 84.3 88.5 87.9 87.6 85.0 79.8 78.1 84.5
RP RP b 87.7 88.3 88.8 87.7 85.4 80.7 79.7 85.5
RP b LP 84.1 94.3 89.6 85.1 80.9 76.6 71.6 83.2
RP b RP 84.0 94.2 94.3 92.2 89.3 84.8 82.2 88.7
RP b RP b 87.2 93.6 94.1 93.3 88.6 86.8 85.7 89.9

Table 2: Accuracies from WP-BART. The integers refer to the depth of the ground-truth proof.
Mean is the average across all depths.

Train Test 0 1 2 3 4 5 6 Mean
LP LP 99.9 99.9 99.8 99.9 99.5 99.6 99.5 99.7
LP RP 100.0 99.9 99.7 99.2 99.1 99.3 98.7 99.4
LP RP b 100.0 99.8 99.7 99.0 99.2 99.3 99.2 99.4
RP LP 100.0 99.8 99.7 99.4 98.8 98.7 98.7 99.3
RP RP 100.0 100.0 99.9 99.6 99.6 99.7 99.5 99.7
RP RP b 100.0 100.0 99.8 99.6 99.4 99.6 99.7 99.7
RP b LP 100.0 99.8 99.7 99.4 99.0 98.9 98.7 99.4
RP b RP 99.9 100.0 99.9 99.6 99.7 99.6 99.6 99.8
RP b RP b 100.0 100.0 99.8 99.5 99.5 99.7 99.7 99.7

Table 3: Accuracies from SIP-BART trained on the different distributions. The integers refer
to the depth of the ground-truth proof. Mean is the average accuracy across all depths.
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