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Introduction We investigate learning to identify useful lemmas for ATP, where usefulness is
defined in terms of 1) reducing proof search and 2) shortening the length of the overall proof.
How can ATP performance be improved by the generation and selection of useful lemmas?
In particular, we raise the question of what one can learn from a failed proof attempt. We
present a proposal about how to learn from failed proof attempts of a single problem. This is in
sharp contrast with previous works that rely on a large corpus of problems and aim to improve
performance based on success obtained with easier problems. By way of motivation, we argue
that human mathematicians learn from failed attempts as well.

Restriction to a class of problems with accessible and simple proof structures In-
terested in novel techniques, we work with a restricted class of first-order problems, condensed
detachment (CD) problems [9, 7], due to Carew A. Meredith [5]. Inference steps can be charac-
terized by detachment (modus ponens) combined with unification. Proof structures are partic-
ularly simple and accessible: full binary trees, or terms with a binary function symbol D, which
we call D-terms. Constants in these terms label axioms. As examples of D-terms consider 1, a
constant representing a use of the axiom labeled by 1; D(1,1), representing a detachment step
applied to axiom 1 as major and minor premise; or D(1,D(1,1)), representing a proof with two
detachment steps. These proof terms are closely related to proof structures of the connection
method [3, 4].

Proof search and data extraction We rely on theorem prover SGCD [8] which performs
proof search by structure enumeration of binary trees (interwoven with formula unification),
until a suitable D-term is found. Enumeration can be axiom-driven, i.e. starting from axiom set
As, producing D-terms that represent complete proofs of unit lemmas. We can also enumerate
goal-driven, starting from conjecture C' and obtaining partial proof trees of C. In practice
we interleave goal-driven and axiom-driven phases. Using the idea of Hindsight Experience
Replay [1], we can “pretend” that both sorts of failed proof attempts are in fact successful: In
the axiom-driven case, we change the goal conjecture to the one that was actually proven and
in the goal-driven case, we change the axioms to include whatever is needed to complete the
proof. Hence, we end up enumerating complete proof trees of “some” problems. We note that
the idea of Hindsight Experience Replay has already been applied to theorem proving in [2] in
the context of training a policy model to guide saturation-style forward reasoning.

Given a proof tree P’ of some formula C’ from axiom set As’, any connected subgraph S’
of P’ can be considered as the proof of a lemma candidate L. If S’ is a full tree, it proves a
unit lemma, which is the formula associated with its root. Otherwise, it proves a Horn clause,
whose head is the root formula of S’ and whose body consists of the open leaves of S’. If we
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can measure how useful lemma L is for proving C’ given axioms As’, this can serve as a useful
training signal for a guidance model. For the utility measure U, there are easy-to-compute
logical candidates, such as the compression in tree size, tree height, DAG size etc. A more
refined measure is obtained if we reprove C’ with the lemma L added to the axioms As’ and
observe how the number of interence steps change. This is slower to compute, but takes into
account the particularities of the prover, hence providing more focused guidance. In practice,
we find that the best performance is obtained by reproving and then normalising the inference
step reduction into [—1, 1], where —1 means that the problem could not be solved within the
original inference limit and 1 is assigned to the lemma that yields the greatest speedup. We
end up with tuples (C’, As’, L,U) to learn from.

Iterating proof search and training During the proof search of conjecture C' from axiom
set As, we keep track of all produced proof trees P’ and collect (C’, As’, L,U) tuples, forming
a training dataset D. Once proof search is unsuccessful, we fit a neural lemma selector to D.
This neural model M (conjecture, axioms, lemma) predicts the utility of the input lemma for
proving the conjecture from the axioms. Model M is next evaluated on all collected lemmas,
along with the original conjecture and axioms, i.e. we compute pairs

{L,U)|{, ,L, ye D, U=M(C,As,L)}

Lemmas with the top k utilities are selected, where k is a hyperparameter to be tuned. The
selected lemmas are added to the problem as axioms' and we can start proof search again.
Each iteration produces novel proof attempts and novel training signal, hopefully guiding the
prover closer to solving the target problem.

Current Status We have performed experiments on training a unit lemma selector from
successful proof attempts, which is explained in [6]. We are currently working on extending
the codebase to accommodate Horn lemmas and the extraction of training signal from failed
attempts.
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