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1 Introduction

Researchers have applied various machine learning techniques to predict tac-
tics and search proofs for interactive theorem proving (ITP). Tactician [2] and
TacticToe [4] apply classical statistical machine learning techniques such as k-
nearest neighbors (k-NN), random forests, and naive-bayes to predict tactics.
CoqGym [8] and HOList [1] use neural networks such as Tree LSTM and GNN
for predicting tactics. Recently, large language models have also been applied
to making tactic predictions in GPT-f [5].

However, all of the existing approaches suffer from some limitations. First,
most existing approaches are unexplainable. Both neural networks and random
forests are unexplainable. But explainability is crucial in making tactic sugges-
tions. In many proof assistants, users are able to define their own tactics. It is
common that the machine learning model suggests some rarely known tactics
from large datasets. Understanding the reasons behind the suggestions enables
the users to determine which tactic to choose in order to continue the proof.

Second, propositional features make the learners lose explainability and ex-
pressivity. Propositional features are not able to distinguish features that belong
to different hypotheses. They also cannot keep the tree structures of the proof
state.

Finally, including neural networks, none of the approaches are actually good
at proving complicated theorems. Most of the theorems proved by them are
relatively trivial. This inspires us to try some new techniques to overcome
the limitations of the existing statistical learning techniques and improve the
performance.

Given the limitations of existing approaches, we want to investigate a very
different machine learning technique called inductive logic programming (ILP).
The goal of ILP is to induce a set of logical rules to generalize the training
examples. ILP is explainable and can express complicated relationships. We
aim at combining ILP and existing statistical learning techniques to develop
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dif(HypName1, HypName2).

dif(HypPosition1, HypPosition2).

dif(GoalPosition1, GoalPosition2).

position_left(GoalPosition1, GoalPosition2).

position_left(HypPosition1, HypPosition2).

position_above(HypPosition1, HypPosition2).

position_above(GoalPosition1, GoalPosition2).

% For a proof state with ProofStateId, two subterms rooted at

% GoalPosition1 and GoalPosition2 are the same.

eq_subterm(ProofStateId, GoalPosition1, GoalPosition1).

eq_subterm(ProofStateId, HypPosition1, HypPosition2).

eq_subterm(ProofStateId, GoalPosition, HypPosition).

Figure 1: The predicates that can be learned by Aleph.

novel machine learning techniques for making tactic predictions for the Coq
proof assistant [7].

2 Methods

The goal of ILP is to induce first- or higher-order logic programs (hypotheses)
to generalize training examples. In this work, we use the ILP system Aleph [6]
to learn hypotheses. The learned hypothesis is conceived as a first-order Prolog
clause as depicted below.

tac(ProofStateId, string of the tactic) :- A1, ..., Am

Here, the head tac is a tactic and the body A1, . . . , Am consists of atoms.
The tac takes the identifier of the proof state and the string of the tactic as
arguments. Every node in the abstract syntax tree (AST) of the proof state is
converted to a fact. Assume a proof state identified with the number 4. A node
ng in the position goal pos of the goal is converted to ng(4, goal pos). A
node nh in the position hyp pos of the hypothesis h is converted to ng(4, h,

hyp pos).
Besides using the nodes in the AST as predicates, we also define the predi-

cates in Figure 1. The defined predicates can capture the relative positions of
nodes in the AST. The predicate eq subterm can show the equality between
subterms. The clause of assumption (simpl) indicates that if a proof state
satisfies this clause, then assumption (simpl) is appropriate for the proof state
and vice versa.

Figure 2 depicts two clauses learned by Aleph. The first clause is learned
from the proof state H : (i < n)%nat, ... |- (i < n)%nat It shows that if
there is a Coq proof state that has < both in a hypothesis and the goal, and two
subterms rooted with < are the same, then assumption may be suitable. The sec-
ond clause is learned from the state ... H1 : (i <= N)\%nat |- (y = y ^ 1).
After the execution of simpl, it becomes ... H1 : (i <= N)%nat |- (y =
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% The predicate coq_Init_Peano_lt denotes the less than identifier (<).

tac(A,"assumption") :-

coq_Init_Peano_lt(A,B), coq_Init_Peano_lt(A,C,D), eq_subterm(A,B,D).

% The predicate coq_Init_Peano_le denotes the less than or equal to

% identifier (<=). The predicates coq_Init_Datatypes_O and coq_Init_Datatypes_S

% denote two identifiers for defining natural numbers. The predicate

% coq_Reals_Rpow_def_pow denotes the identifier of the power operation (^).

tac(A,"simpl") :-

coq_Init_Peano_le(A,B,C), coq_Init_Datatypes_O(A,D),

coq_Reals_Rpow_def_pow(A,E), position_above(E,D),

coq_Init_Datatypes_S(A,F), position_above(F,D).

Figure 2: Two clauses learned for assumption and simpl.

y * 1). The clause shows that the power of one is likely to be simplified to the
multiplication by one.

jacard(f1, f2) =
f1 ∩ f2
f1 ∪ f2

The k-NN classifier is too simple compared to ILP. It merely calculates the
distance (such as the Jaccard similarity shown above) between the features of
the proof states and cannot recognize the importance of each feature. A proof
state may contain more nodes than those presented for the clauses in Figure 2;
nevertheless, ILP can try to only keep the important atoms in the clause.

Compared to propositional features, first-order logic clauses are better at
expressivity and explainability. Current proof automation systems like Tactician
and Enigma [3] merely use propositional features. They use vertical paths and
horizontal paths up to a certain length. However, they do not keep the tree
structure. A longer path may also be useful. Sometimes we do not need all the
nodes in the path. For instance, we may not need the node b in the vertical
path a-b-c and may only want to know that a is above c. First-order logic can
also represent which hypothesis the feature belongs to. However, propositional
features merge features from all hypotheses together.

The experiments of the combination of ILP and statistical learning are still
being conducted. First, we will generate several rules for each tactic. Then, we
will use k-NN, random forests, and GPT-2 to predict a sequence of tactics for a
proof state. For each predicted tactic, if the proof state cannot satisfy any rules
related to the tactic, we will filter it from the predictions.
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