
Proving theorems using Incremental Learning and Hindsight
Experience Replay

1 Introduction
The highest performing ATP systems (e.g., [7, 18]) in first order logic have been evolving for
decades and have grown to use an increasing number of manually designed heuristics mixed with
some machine learning, to obtain a large number of search strategies that are tried sequentially
or in parallel. Some recent works [5, 13, 19] build on top of these provers, using modern machine
learning techniques to augment, select or prioritize their already existing heuristics, with some
success. Other recent works do not build on top of other provers, but still require existing proof
examples as input (e.g., [9, 23]). Such machine-learning-based ATP systems can struggle to solve
difficult problems when the training dataset does not provide problems of sufficiently diverse
difficulties.

In this paper, we propose an approach which can build a strong theorem prover without
relying on existing domain-specific heuristics or on prior input data (in the form of proofs) to
prime the learning. We strive to design a learning methodology for ATP that allows a system to
improve even when there are large gaps in the difficulty of given set of theorems. In particular,
given a set of conjectures without proofs, our system trains itself, based on its own attempts and
(dis)proves an increasing number of conjectures, an approach which can be viewed as a form of
incremental learning. Additionally, all the previous approaches [19, 1, 13] learn exclusively on
successful proof attempts. When no new theorem can be proven, the learner may not be able
to improve anymore and thus the system may not be able to obtain more training data. This
could in principle happen even at the very start of training, if all the theorems available are too
hard. To tackle this challenge, we adapt the idea of hindsight experience replay (HER) [3] to
ATP: Clauses reached during proof attempts (whether successful or not) are turned into goals
in hindsight, producing a large amount of ‘auxiliary’ theorems with proofs of varied difficulties
for the learner, even in principle when no theorem from the original set can be proven initially.
This leads to a smoother learning regime and a constantly improving learner.

We evaluate our approach on two popular benchmarks: MPTP2078 [2] and M2k [17] and
compare it both with TRAIL [1], a recent machine learning prover as well as with E prover
[24, 7], one of the leading heuristic provers. Our proposed approach substantially outperforms
TRAIL [1] on both datasets, surpasses E in the auto configuration with a 100s time limit, and is
competitive with E in the autoschedule configuration with a 7 days time limit. In addition, our
approach almost always (99.5% of cases) finds shorter proofs than E.

2 Methodology
We describe the two key components of our approach: how we adapt hindsight experience replay
in an incremental learning pipeline, and how clauses are represented for the learner.

Incremental Learning and Hindsight Experience Replay Similar to previous approaches
[19, 13, 1], we use the given clause algorithm [21] where the clause scoring heuristics are replaced
with a neural network. We start with no proof data to start, and train a simple binary classifier
to determine if a particular clause appears in a proof of a conjecture or not. The classifier is

Proving theorems using Incremental learning and Hindsight Experience Replay

Table 1: Number of conjectures proven on MPTP2078 and M2k.

Domain Conjectures Heuristic Approaches ML Approaches
E-basic E-auto E auto-schedule E-best TRAIL IL IL
(100s) (100s) (100s) (7 days) w/o HER w/HER

MPTP2078 2078 555 1139 1289 1369 1213 1056 1353
M2k 2003 1451 1845 1911 1923 1808 1688 1861

trained in an incremental manner where the new proof data obtained by the proof attempts is
used to feed the classifier in a continuous manner. The key issue in such an approach arises
if the complete set of conjectures are either very difficult or there are big gaps in difficulty of
given conjectures such that no training data can be generated by proof attempts to train the
classifier. To counter this, we adapt the idea of hindsight experience replay in ATP where any
proof attempt whether successful or failure would generate new data for classifier. The core
idea of HER is to take any “unsuccessful” trajectory in a goal-based task and convert it into
a successful one by treating the final state that happened to be reached as if it were the goal
state, in hindsight. Inspired by HER, we use the clauses generated during any proof attempt
as additional conjectures, which we call hindsight goals, leading to a supply of positive and
negative examples. Let D be any non-input clause generated during the refutation attempt of
Cs. We call D a hindsight goal.1 Then, the set Cs ∪ {¬D} can be refuted. Further, we can use
the ancestors of D as positive examples for the negated conjecture and axioms Cs ∪ {¬D}. This
generates a very large number of examples, allowing us to effectively train the neural network,
even with only a few conjectures at hand.

Representation Our clause scoring network receives as input the clause to score, x, the
hindsight goal clause, g, and a sequence of negated conjecture clauses Cs. Individual clauses
are transformed into a heterogeneous directed acyclic graphs, called clause graph similar to [4].
We use a Transformer encoder architecture [25] for the clause-scoring network, whose input is
composed of the set of node embeddings in the current clause x, goal clause g and conjecture
clauses Cs, up to 128 nodes. For each node, we compute a spectral encoding vector representing
its position in the clause graph [8]; this is given by the eigenvectors of the Laplacian matrix of
the graph. This replaces the traditional positional encoding in transformers.

3 Experiments and Results
We implement our approach on top of E prover but disable all clause scoring heuristics of E. We
use a maximum time of 100s for each proof attempt. We evaluate on two popular benchmarks:
MPTP2078[2] and M2k[17] which are widely used in literature. Further, we compare our results
with E in different configurations as well as incremental learning without hindsight (IL w/o
HER) and TRAIL[1], a recent ML based prover. Table 1 shows the number of proved conjectures
by all provers. IL w/HER not only outperforms TRAIL, IL w/o HER and E (100s) but achieves
a competing performance when E is run for the whole duration of training time. We refer the
reader to the appendix for further details of methodology, experimental setup and additional
results.

1Note that, while the original version of HER [3] only uses the last reached state as a single hindsight goal,
we use all intermediate clauses, providing many more data points.

2

Proving theorems using Incremental learning and Hindsight Experience Replay

References
[1] I. Abdelaziz, M. Crouse, B. Makni, V. Austel, C. Cornelio, S. Ikbal, P. Kapanipathi,

N. Makondo, K. Srinivas, M. Witbrock, and A. Fokoue. Learning to guide a saturation-
based theorem prover. IEEE Transactions on Pattern Analysis & Machine Intelligence,
2022.

[2] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. Journal of Automated
Reasoning, 52(2):191–213, 2014.

[3] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[4] Eser Aygün, Zafarali Ahmed, Ankit Anand, Vlad Firoiu, Xavier Glorot, Laurent Orseau,
Doina Precup, and Shibl Mourad. Learning to prove from synthetic theorems. arXiv
preprint arXiv:2006.11259, 2020.

[5] Karel Chvalovskỳ, Jan Jakub̊uv, Martin Suda, and Josef Urban. Enigma-ng: efficient neural
and gradient-boosted inference guidance for e. In International Conference on Automated
Deduction, pages 197–215. Springer, 2019.

[6] Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina Cornelio,
Pavan Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Witbrock, and Achille
Fokoue. A deep reinforcement learning approach to first-order logic theorem proving.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(7):6279–6287, 2021.

[7] Simon Cruanes, Stephan Schulz, and Petar Vukmirović. Faster, Higher, Stronger: E 2.3. In
TACAS 2019, volume 11716 of LNAI, pages 495–507, April 2019.

[8] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. CoRR, abs/2012.09699, 2020.

[9] Zarathustra Amadeus Goertzel. Make E smart again (short paper). In Automated Reasoning,
pages 408–415. Springer International Publishing, 2020.

[10] Adam Grabowski, Artur Korni lowicz, and Adam Naumowicz. Four decades of mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015.

[11] Malte Helmert, Tor Lattimore, Levi H. S. Lelis, Laurent Orseau, and Nathan R. Sturtevant.
Iterative budgeted exponential search. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, page 1249–1257. AAAI Press, 2019.

[12] S. Jabbari Arfaee, S. Zilles, and R. C. Holte. Learning heuristic functions for large state
spaces. Artificial Intelligence, 175(16-17):2075–2098, 2011.

[13] Jan Jakub̊uv, Karel Chvalovskỳ, Miroslav Oľsák, Bartosz Piotrowski, Martin Suda, and
Josef Urban. Enigma anonymous: Symbol-independent inference guiding machine (system
description). In International Joint Conference on Automated Reasoning, pages 448–463.
Springer, 2020.

3

Proving theorems using Incremental learning and Hindsight Experience Replay

[14] Jan Jakub̊uv and Josef Urban. Enigma: efficient learning-based inference guiding machine.
In International Conference on Intelligent Computer Mathematics, pages 292–302. Springer,
2017.

[15] Jan Jakub̊uv and Josef Urban. Hammering Mizar by Learning Clause Guidance (Short
Paper). In 10th International Conference on Interactive Theorem Proving (ITP 2019),
volume 141, pages 34:1–34:8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[16] Cezary Kaliszyk and Josef Urban. Learning-assisted theorem proving with millions of
lemmas. Journal of symbolic computation, 69:109–128, 2015.

[17] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Oľsák. Reinforcement
learning of theorem proving. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

[18] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In Interna-
tional Conference on Computer Aided Verification, pages 1–35. Springer, 2013.

[19] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In LPAR-21. 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, volume 46 of EPiC Series in Computing, pages 85–105,
2017.

[20] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas
algorithms. Inf. Process. Lett., 47(4):173–180, September 1993.

[21] William McCune and Larry Wos. Otter - the CADE-13 competition incarnations. Journal
of Automated Reasoning, 18(2):211–220, 1997.

[22] Laurent Orseau and Levi H. S. Lelis. Policy-guided heuristic search with guarantees.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):12382–12390, May
2021.

[23] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem
proving. arXiv preprint arXiv:2009.03393, 2020.

[24] Stephan Schulz. E–a brainiac theorem prover. AI Communications, 15(2, 3):111–126, 2002.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

4

Proving theorems using Incremental learning and Hindsight Experience Replay

Appendix

Methodology

we describe the basic search algorithm used by most of the traditional first-order automated
theorem provers, explain how we integrate our method into one of these provers and finally,
provide a detailed description of our overall incremental learning system.

Given-clause algorithm. Almost all of the powerful automated theorem provers for first-
order logic, including E, use some variation of a given-clause search algorithm [18, 7, 21]. This
type of algorithm works by continuously choosing a new given clause to expand, with the help
of one or more priority queues, until an empty clause (i.e. contradiction) is reached. The given
clause is combined according to various logical operations (like resolution, factoring, etc.;) with
previously chosen active clauses to generate more clauses, which are consequently added to the
priority queues. Each priority queue depends on a scoring function for sorting the clauses. At
every step, a queue is selected based on a schedule, which usually consists of a simple cycle
through all queues and each queue occurs for a fixed number of pre-determined steps within
in each cycle. For example, the simplest schedule could be round robin sampling of all queues
where each cycle consists of a single occurrence of each queue.

The two most basic types of queues are the FIFO queue and the clause weight queue. The
former keeps the clauses sorted from oldest to youngest, guaranteeing that every clause will be
visited after some finite amount of time. The latter uses a simple linear function that combines
the numbers of various elements in the clauses (such as literals, atoms, variables) to obtain a
“weight” and sorts the clauses from lightest to heaviest. The idea is to prioritize lighter or smaller
clauses which, empirically, helps in reaching the empty clause faster.

Using machine learning to improve provers that depend on the given-clause algo-
rithm. There are many ways to incorporate machine learning into a prover that is based on
the given-clause algorithm. One option is to replace the queues with a policy over clauses that
has full control over the search [6, 1]. Another option is to train a clause scoring function which
merely provides an additional queue that can be added to any existing set of queues [19, 5].

Integrating our method into E. We take the latter approach in this work. We train a
classifier that predicts the probability of a clause appearing in the proof given a set of initial
clauses and use the predictions of this classifier to construct a “learned queue”. We integrate
this queue into the popular open-source first-order prover E using remote procedure calls (in
a fashion similar to Enigma [14]). This allows us to take advantage of the sophisticated logic
engine in E.

E, however, is more than its logic engine. It comes preloaded with hundreds of thousands
of lines of code for heuristics (optimized for certain datasets) which help E pick the right set
of queues with the right set of ratios for the given problem. As our goal is to replace these
complicated heuristics with a single machine learning system, when we evaluate our method, we
use a simple, fixed queue structure: a FIFO queue for completeness, a basic clause weight queue
for greedy search and a ‘learned’ queue for guided search.

5

Proving theorems using Incremental learning and Hindsight Experience Replay

Clause-scoring and hindsight experience replay
In order to perform clause-scoring, we use deep neural networks, which can be trained in many
ways so as to find proofs faster. A method utilized by [19] and [15] turns the scoring task into a
classification task: a network is trained to predict whether the clause to be scored will appear in
the proof or not. In other words, the probability predicted by an ‘in-proofness’ classifier is used
as the score. To train, once a proof is found, the clauses that participate in the proof (i.e., the
ancestors of the empty clause) are considered to be positive examples, while all other generated
clauses are taken as negative examples.2 Then, given as input one such generated clause x along
with the input clauses Cs, the network must learn to predict whether x is part of the (found)
proof.

There are two main drawbacks to this approach. First, if all conjectures are too hard for the
initially unoptimized prover, no proof is found and no positive examples are available, making
supervised learning impossible. Second, since proofs are often small (often a few dozen steps),
only few positive examples are generated. As the number of available conjectures is often small
too, there is far too little data to train a modern high-capacity neural network. Moreover, for
supervised learning to be successful, the conjectures that can be proven must be sufficiently
diverse, so the learner can steadily improve. Unfortunately, there is no guarantee that such a
curriculum is available. If the difficulty suddenly jumps, the learner may be unable to improve
further. These shortcomings arise because the learner only uses successful proofs, and all the
unsuccessful proof attempts are discarded. In particular, the overwhelming majority of the
generated clauses become negative examples, and need to be discarded to maintain a good
balance with the positive examples.

To leverage the data generated in unsuccessful proof attempts, we adapt the concept of
hindsight experience replay (HER) [3] from goal-conditioned reinforcement learning to theorem
proving. The core idea of HER is to take any “unsuccessful” trajectory in a goal-based task
and convert it into a successful one by treating the final state that happened to be reached as
if it were the goal state, in hindsight. A deep network is then trained with this trajectory, by
contextualizing the policy with this state instead of the original goal. This way, even in the
absence of positive feedback, the network is still able to adapt to the dataset, if not to the goal,
thus having a better chance to reach the goal on future tries.

Inspired by HER, we use the clauses generated during any proof attempt as additional
conjectures, which we call hindsight goals, leading to a supply of positive and negative examples.
Let D be any non-input clause generated during the refutation attempt of Cs. We call D a
hindsight goal.3 Then, the set Cs ∪ {¬D} can be refuted. Furthermore, once the prover reaches
D starting from Cs ∪ {¬D}, only a few more resolution steps are necessary to reach the empty
clause; that is, there exists a refutation proof of Cs ∪ {¬D} where D is an ancestor of the empty
clause. Hence, we can use the ancestors of D as positive examples for the negated conjecture and
axioms Cs ∪ {¬D}. This generates a very large number of examples, allowing us to effectively
train the neural network, even with only a few conjectures at hand.

Furthermore, to keep the network small, axioms are not provided as input to the scoring
network Although the set of active clauses is an important factor in determining the usefulness
of a clause, we ignore it in the network input to keep the network size smaller.

2These examples are technically not necessarily negative, as they may be part of another proof. But avoiding
these examples during the search still helps the system to attribute more significance to the positive examples.

3Note that, while the original version of HER [3] only uses the last reached state as a single hindsight goal,
we use all intermediate clauses, providing many more data points.

6

Proving theorems using Incremental learning and Hindsight Experience Replay

Algorithm 1 Distributed incremental learning. launch starts a new process in parallel. For
each conjecture an instance of UBS decides the sequence of time limits for solving attempts.

def main(conjectures):
Launch and connect learners, actors and manager with example buffer & task queue
example_buffer = create_example_buffer()
task_queue = create_task_queue()
learners = [for i = 1..10:

launch learner(example_buffer)]
for i = 1..1000: launch actor(task_queue,

learners, example_buffer)
actor_manager = launch actor_manager(conjectures, task_queue)
wait for actor_manager to finish

def learner(example_buffer):
repeat forever:

Sample a batch of examples and train the network.
batch = sample_batch_uniformly(example_buffer)
minimize_classification_loss(batch) # we use cross-entropy

def actor(task_queue, learners, example_buffer)
repeat forever:

Fetch a task and attempt to prove the conjecture.
conjecture, time_limit = get_task(task_queue)
learner = sample_uniformly(learners)
run E on conjecture

for at most time_limit seconds;
obtain generated_clauses

examples = sample_examples(generated_clauses) # see Alg. (*\ref{alg:sample_examples
}*)

put_examples(example_buffer, examples)

def actor_manager(conjectures, task_queue):
schedulers = []
for conjecture in conjectures:

schedulers[conjecture] = initialize_UBS() # see Section (*\ref{sec:ubs}*)
repeat until all conjectures have been proven:

Choose a random conjecture and enqueue it.
conjecture = sample_uniformly(conjectures)
scheduler = schedulers[conjecture]
time_limit = get_next_time_limit(scheduler)
put_task(task_queue, (conjecture, time_limit))

Incremental learning algorithm
Typical supervised learning ATP systems require a set of proofs (provided by other provers) to
optimize their model (e.g., [19, 13, 4]). Success is assessed by cross-validation. In contrast, we
formulate ATP as an incremental learning problem—see in particular [22, 12]. Given a pool
of unproven conjectures, the objective is to prove as many as possible, even using multiple
attempts, and ideally as quickly as possible. Hence, the learning system must bootstrap directly
from initially-unproven conjectures, without any initial supervised training data. Success is

7

Proving theorems using Incremental learning and Hindsight Experience Replay

Algorithm 2 Example sampling algorithm.

def sample_examples(generated_clauses):
Estimate the number of examples that can be consumed by the learner
target_num_examples =

time_elapsed_since_last_attempt \times target_num_examples_per_second

Remove the input clauses
hindsight_goals =

generated_clauses \ input_clauses

Subsample the goals and the examples
examples = []
sizes = {tree_size(c) : c \in hindsight_goals}
for size in sizes:

size_goals = {c \in hindsight_goals :
tree_size(c) == size}

w_size = 1 / ln(size + e) - 1 / ln(size + e + 1)
num_examples = ceil(target_num_examples \times w_size)
for _ in range(num_examples):

goal = uniform_sample(size_goals) # pick hindsight goal of this size
anc = ancestors(goal)
examples += [positive_example(uniform_sample(anc), goal)]
examples += [negative_example(uniform_sample(hindsight_goals \ anc), goal)]

return examples

assessed by the number of proven conjectures, and the time spent solving them. Hence, we
do not need to split the set of conjectures into train/test/validate sets because, if the system
overfits to the proofs of a subset of conjectures, it will not be able to prove more conjectures.

Our incremental learning system is described in Algorithm 1. Initially, all conjectures are
unproven and the clause-scoring network is initialized randomly. At this stage, we have no
information on how long it takes to prove a certain conjecture, or whether it can be proven at
all. The prover attempts to prove all conjectures provided using a scheduler (described below),
so as to vary time limits for each conjecture. This ensures that proofs for easy conjectures are
obtained early, and the resulting positive and negative examples are then used to train the
clause-scoring network. As the network learns, more conjectures can be proven, providing in
turn more data, and so on. This incremental learning algorithm thus allows us to automatically
build a capable prover for a given domain, starting from a basic prover that may not even be
able to prove a single conjecture in the given set.

Time scheduling. All conjectures are attempted in parallel, each on a CPU. For each
conjecture, we use the uniform budgeted scheduler (UBS) algorithm [11, section 7] to further
simulate running in (pseudo-)parallel the solver with varying time budgets, and restarting each
time the budget is exhausted. In the terminology of UBS, we take T (k, r) = 3r2k−1 in seconds,
but we cap k ≤ kmax = 10. A UBS instance simulates on a single CPU running kmax restarting
programs, by interleaving them: On a ‘virtual’ CPU of index k ∈ {1, . . . , kmax}, a program
corresponds to running the prover for a budget of 3 · 2k−1 seconds before restarting it for the
same budget of time and so on; r is the number of restarts. Hence, as the network learns, each
conjecture is incrementally attempted with time budgets of varying sizes (3s, 6s, 12s, . . . , 3072s),
using no more than one hour, while carefully balancing the cumulative time spent within each

8

Proving theorems using Incremental learning and Hindsight Experience Replay

budget [20, 11]. Once a proof has been found for a conjecture, the scheduler is not stopped, so
as to continue searching for more (often shorter) proofs.

Distributed implementation. Our implementation consists of multiple actors running in
parallel, a manager that distributes tasks to the actors using the time scheduling algorithm, and
a task queue that handles manager-actors communication. We used ten learners training ten
separate models to increase the diversity of the search without having to increase the number of
actors. These learners are fed with training examples from the actors and use them to update
their parameters of their clause-scoring networks. Note that during the first 1 000 updates, the
actors do not use the clause-scoring network as its outputs are mostly random.4

Subsampling hindsight goals and examples. With HER, the number of available
examples is actually far too large: if, after a proof attempt, n clauses have been generated (n
may be in the thousands), not only can each clause be used as a hindsight goal, but there are
about n2 pairs of the form (positive example, hindsight goal), and far more negative examples.
This suddenly puts us in a very data-rich regime, which contrasts with the data scarcity of
learning only from complete proofs of the given conjecture. Hence, we need to subsample the
examples in order to prevent overwhelming the learner. To this end, we first estimate the number
of examples the learner can consume per second before sampling. But there is an additional
difficulty: the number of possible clauses is exponentially large in the tree_size (number of
nodes in the clause tree) of the clause, while small clauses are likely more relevant since the
empty clause (which is the true target) has size 0. Moreover, clauses can be rather large: a
tree_size over 300 is quite common, and we observed some tree_size values over 6 000. To
correct for this, we fix the proportion of positive and negative examples for each hindsight goal
clause size, ensuring that small hindsight goal clauses are favoured, while allowing a diverse
sample of large clauses, using a heavy-tail distribution ws. Finally, all the positive and negative
examples thus sampled are added to the training pool for the learners.

Representation
Our clause scoring network receives as input the clause to score, x, the hindsight goal clause, g,
and a sequence of negated conjecture clauses Cs. Individual clauses are transformed into directed
acyclic graphs (an example is depicted in Figure 1) with five different node types : clause, literal,
atomic-term, variable-term or variable. First, there is a clause node, whose children are literal
nodes, corresponding to all literals of the clause (each one is associated with a predicate). The
children of literal nodes represent the arguments of the predicate; they are either variable-term
nodes if the argument is a variable, or atomic-term nodes otherwise5. Children of atomic-term
nodes follow the same description. Finally, each variable-term node is linked to a variable node,
which has as many parents as there are instances of the corresponding variable in the clause.

To each node, we associate a feature vector composed of the following five components: (i)
A one-hot vector of length 3, encoding if the node belongs to x, g or a member of Cs. (ii) A
one-hot vector of length 5 encoding the node type: clause, literal, atomic-term, variable-term
or variable. (iii) A one-hot vector of length 2 encoding if the node belongs to a positive or
negative literal (null vector for clause and variable nodes). (iv) A hash vector representing the
predicate name or the function/constant name respectively for predicate or atomic-term nodes
(null vector for other nodes). (v) A hash vector representing the predicate/function argument
slot in which the term is present (null vector for clause, literal and variable nodes). Hash vectors

4We picked 1000 as it appeared to be approximately the number of steps required for the learner to reach the
base prover performance on a few experiments.

5A constant argument is equivalent with a function of arity 0.

9

Proving theorems using Incremental learning and Hindsight Experience Replay

0 0 0

− p 0 + q 0

− 0 p@1

+ f q@1

+ c q@2

+ 0 f@1

variable

0 0 0

¬p(X) ∨ q(f(X), c)

¬p(X) q(f(X), c)

X c

f(X)

X

goal

v termgoal

a termgoal

a termgoal

literalgoal

v termgoal

literalgoal

clausegoal

Figure 1: Clause graph of a goal clause. Each node has five features: clause type, node type,
literal polarity, symbol hash and argument slot hash. The parts of formula corresponding to
each node are shown outside of the nodes.

are randomly sampled uniformly on the 64 dimensional unit hyper-sphere, using the name of
the predicate, function or constant (and the argument position for slots) as seed.

The node feature vectors are projected into a 64-dimensional node embedding space using
a linear layer that trains during learning. We use a Transformer encoder architecture [25] for
the clause-scoring network, whose input is composed of the set of node embeddings in the
current clause x, goal clause g and conjecture clauses Cs, up to 128 nodes. For each node, we
compute a spectral encoding vector representing its position in the clause graph [8]; this is
given by the eigenvectors of the Laplacian matrix of the graph from which we keep only the 64
first dimensions, corresponding to the low frequency components. It replaces the traditional
positional encoding of Transformers. Note that if there are more than 128 nodes in the set of
clause graphs, we prioritize x, then g and Cs. Within each graph, we order the nodes from
top to bottom then left to right (e.g. the first nodes to be filtered out would be variable- or
atomic-term nodes of the last conjecture clause). We only keep the transformer encoder output
corresponding to the root node of the target clause and project it, using a linear layer, into a
single logit, representing the probability that x will be used to reach g starting from Cs.

Additional Results
To evaluate our approach, we use two popular benchmarks created out of the larger Mizar
Mathematical Library [10] and used in previous works [6, 17, 16]: MPTP2078 [2] is a sample
of larger Mizar datasets which is a good mixture of hard and easy theorems; M2k [17] is a
relatively easier benchmark which contains theorems that have already been proven by at least
one of the automated theorem provers in the past. The relative hardness of these datasets is
also illustrated by the fact that the state-of-the-art E prover proves less than 70% theorems
in MPTP2078 while it achieves proof rate greater than 95% on M2k theorems. We ignore five
problems in MPTP2078 and 13 problems in M2k due to E failing to generate a conjunctive

10

Proving theorems using Incremental learning and Hindsight Experience Replay

0 50 100 150 200

E

0

50

100

150

200

IL
w
/
H
E
R

Figure 2: Scatter plot of the shortest proof lengths achieved by E vs. incremental learning with
hindsight experience replay on the conjectures that can be proven by both.

normal form (first step in proving) of the problem.
We evaluate and compare our approach with both machine learning and heuristic based

approaches on these two datasets. We compare our approach with E, considered a state-of-
the-art heuristic based prover, in four configurations: (i) E in its default mode (without any
sophisticated heuristics and scheduling) for 100s (referred to as E-basic), (ii) E in auto mode
for 100s (the mode that was used by [6] and [1] 6), (iii) E in auto-schedule mode for 100s (we
observed that the auto-schedule mode significantly outperforms the auto mode), (iv) the best of
different runs of E in auto-schedule mode with time limits of 100s, 1 hour, 1 day and 7 days
(referred to as E-best). We used E prover version 2.5 [7] in each of these configurations with a
memory limit of 8192 GB.

We ran our incremental learning algorithm with hindsight experience replay (IL w/HER)
for seven days on each dataset, using 1000 actors where each attempt was allowed a maximum
duration of 100s. Every successful attempt that leads to a proof during training is logged,
along with the time elapsed, the number of clauses generated, the length of the proof, and the
proof itself. In order to show the importance of HER in achieving the results above, we ran
the same experiments with incremental learning but without HER (IL w/o HER), by training
the clause-scoring network using solely the data extracted from proofs found for the input
problems. As another point of comparison, we include the results of TRAIL, which is a top
performing learning method built on top of E prover, as reported in [1]. Like our approach,
TRAIL does not rely on E’s heuristics and does not use additional input data from which to
bootstrap, so it is directly comparable. [1] also reported numbers for other learning provers
that are similar in spirit, but since their performance is inferior to TRAIL, we do not include
their reported numbers. We note that there are other machine-learning based theorem provers,
such as ENIGMA [13] and its variants, and [19]; but these provers rely heavily either on E’s
heuristics on or input proof data to bootstrap from, and thus fall in a different category from
ours, where the machine learning system based on a basic prover should bootstrap on its own.

Conjectures proven. Table 1 shows the number of conjectures proven by each of these
approaches as well as the actual number of conjectures in each dataset. According to these
results, IL w/HER significantly outperforms TRAIL on both datasets. Interestingly, since
using HER is orthogonal to the methods used by TRAIL, one could hope that combining both

6The exact results reported by [1] for E prover are significantly lower than what we obtained in our experiment.
This could be attributed to a difference in the version of E prover, memory allocated or processor speed—the
exact configuration details are not reported in their paper.

11

Proving theorems using Incremental learning and Hindsight Experience Replay

Table 2: Problems uniquely solved by one method but not the other (E-best or IL w/HER) on
both datasets.

Domain Only E-best Only IL w/HER
MPTP2078 94 78
M2k 79 17

approaches could lead to even better results—but we leave this as future work. IL w/HER proved
2.5 times as many problems as the E-basic on MPTP2078 and 1.28 times as many as E basic
on M2k, improving its performance substantially through the use of a learned clause-scoring
network. IL w/HER also outperforms E-auto as well as E auto-schedule on the MPTP2078
dataset. We do not see a similar improvement on the M2k dataset. This can be due to the
fact that M2k is a subset of theorems already proven by ATPs and hence, by construction, it
consists of the sub-sample of theorems on which E already performs well. Lastly, as IL w/HER
ran for seven days, attempting each conjecture multiple times (though each attempt was allowed
a maximum of 100s) , in order to give E a fair chance, we also ran E for multiple time durations
(100s, 1h, 1d, 7d) and we report the maximum number of conjectures proved in of all these runs
as E-best. Our approach comes very close (less than 1% difference) to the performance of E-best
on the MPTP2078 dataset.

Unique theorems proved by our approach. Additionally, Table 2 shows the number of
theorems proven only by our approach and not E-best, and the other way around.. IL w/HER
manages to prove 78 theorems on MPTP-2078 and 17 theorems on M2k which are not proven
by E-best. This suggests that IL w/HER can find strategies that are absent from E.

Table 3: Comparison of different neural network architectures in IL w/HER on MPTP-2078
and M2k.

Domain Conjectures MLP GNN Sequential Spectral
transformer transformer

MPTP2078 2078 1049 1221 1076 1353
M2k 2003 1772 1756 1704 1861

Without hindsight. In order to evaluate specifically the impact of using HER, we also report
the performance of incremental learning alone which does not use any data from unsuccessful
proof attempts. As seen in Table 1, IL w/o HER performed significantly worse, failing to prove
297 (14.3%) of the conjectures on MPTP2078 and 173(8.6%) conjectures on M2k that can be
proven by IL w/HER. Without enough proofs of hard theorems from which to learn, IL w/o
HER underperformed significantly on these domains compared to IL w/HER.

Quality of proofs. We also looked at the individual proofs discovered by both systems.
Incremental learning combined with the revisiting of previously proven conjectures allowed our
system to discover shorter proofs continually. Figure 2 shows a scatter plot of the lengths of the
shortest proofs found by E vs. found by IL w/HER for each theorem. The shortest proofs found
by our system were consistently shorter than those found by E. Out of the 3119 conjectures

12

Proving theorems using Incremental learning and Hindsight Experience Replay

proven by both systems, our proofs were shorter for 3106 conjectures (99.5%) whereas E’s proofs
were shorter for only 8 conjectures, with 5 proofs being of the same length.

Speed of search. E was able to search 13.6 times faster than our provers, in terms of clauses
generated per second. We believe that the only way for our system to compete with E under
these conditions is to find scoring functions that are much stronger than the numerous heuristics
that have been built into E over time.

Comparison between different representations: In order to understand the impact of
the choice of network architecture on the results, we compared different neural networks trained
with the proposed approach. We compared the spectral transformer representation described
in Sec. 2.3 with MLP (based on manually defined features), Graph Neural Networks (GNNs)
and a sequential text-based representation of the logical formulae which is used in a standard
sequential transformer. For GNNs, we used the same graph structure as the spectral transformer
described in Sec. 3. An additional root node is added at the top to connect the target clause
with the negated conjecture clauses, in order to allow message passing between different clauses.
Table 3 shows the conjectures solved by using different representations trained with IL w/HER
using 1000 actors. We observe that GNNs outperform MLPs but fall short of the spectral
transformer in our implementation on the MPTP2078 dataset. It should be noted that there
are multiple ways to represent logical formulae as graphs, but we confine ourselves within the
representation which is closest to spectral transformers. A detailed investigation of other graph
representations proposed in the literature in combination with IL w/HER is left for future work.
Also, we observe that spectral transformers outperform sequential transformers significantly
in all our experiments. This can be attributed to the fact that spectral transformers capture
graphical structure, and hence exploit logical invariances in formulae, in contrast to sequential
transformers which treat these formulae as text.

13

	Introduction
	Methodology
	Experiments and Results

