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Parallel corpora are key resources for machine translation in natural language processing
(NLP). A parallel corpus maps textual scripts in one language (e.g., French) to their equivalents
in another language (e.g., English). The language-paired scripts in a parallel corpus are data
points used to train language models that learn how to translate text from one language to the
other.

Recently, the theorem proving community explored autoformalisation – the task of generat-
ing formal proofs that can be recognised by a theorem prover from their counterparts expressed
in informal natural language – as an instance of machine translation [1, 2]. Large transformer
models, such as Codex [3], have demonstrated that machines can learn to generate code from
natural language text through the use of large (parallel) corpora.

We introduce the Isabelle Parallel Corpus (IPC) of natural language and Isabelle/HOL
proofs. Natural language proofs in our corpus are expressed using sentences in the natu-
ral language of mathematics, with mathematical expressions transcribed using LATEX. The
aforementioned textual proofs have been extracted from textbooks, International Olympiad of
Mathematics solution sheets and other real-world mathematics resources.

In this presentation we will describe our multi-stage approach for constructing our corpus,
showcase our annotation tools and discuss the challenges involved in designing the annotation
scheme of a parallel corpus linking natural language to formal proofs.

We developed an annotation tool that allows us to (a) record information about artefacts in
the corpus, (b) collect parallel natural language and Isabelle/Isar scripts and (c) implement the
annotation scheme for the IPC. Our tool is built on top of a special instance of the SErAPIS
search engine for Isabelle and supports multi-user annotation.

In the first phase of building our corpus we have sourced over 500 Isabelle artefacts, including
theorems, definitions, lemmata and proof scripts. For each artefact we record information that
includes a statement of each artefact in the natural language of mathematics typeset in LATEX,
a BibTEX citation to the source material (textbooks, journal etc), the page and number (e.g.,
Theorem 4.1) as they appear in the source material. The second phase, which is ongoing,
involves attaching informal and formal Isabelle/Isar proofs to the recorded statements. At the
time of writing, we have paired Isabelle/Isar proofs with corresponding informal proofs for 18
statements.

The consensus in NLP is that machine translation models benefit from word and sentence
alignments [4, 5]. A sentence alignment for two parallel text scripts in different languages is
a pairing that links sentences in one language to sentences in the other language. Similarly, a
word alignment links tokens from a script in one language to the tokens of its equivalent script
in the other language. The parallel corpus designers are responsible for including annotations
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for sentence and word alignments if this information is required by the intended use of the
corpus.

However, without answering questions like “Does every sentence in a natural language proof
correspond to a statement in Isabelle/Isar?” and “Can one Isabelle/Isar statement account for
multiple natural language sentences?”, the nature of sentence and word alignments for a parallel
corpus like the IPC is unclear.

Therefore, the first challenge in designing the IPC is to identify the annotation require-
ments of the corpus for aligning natural language sentences to Isabelle/Isar statements. We
conducted a pilot study to determine the requirements of such an annotation and made some
observations, including:

1. there are sentences in the natural language that do not correspond to any statement in
Isabelle/Isar and vice-versa and this occurs, for example, when the source text and the
Isabelle formalisation assume different prerequisites;

2. there is a many-to-many mapping (i.e. not a perfect one-to-one correspondence) be-
tween facts within the textual proof of a statement and facts within the corresponding
Isabelle/Isar proof script;

3. it sometimes happens that results embedded in Isabelle proofs are not factorised as lem-
mata, which could be possibly useful results on their own, but this phenomenon does not
occur in natural language proofs since one can always refer to a result even if it is not
explicitly factorised;

4. both textual and formal proofs may import dependencies in their argumentation. Depen-
dencies in Isabelle/Isar proofs may span multiple theory files.

Our observations give rise to the second challenge in designing IPC: how should depen-
dencies in parallel textual and Isabelle/Isar proofs be incorporated in the corpus? One solution
would be to integrate dependencies in the corpus and include data about the reference graph
between artefacts [6].

Unlike general-purpose natural language, the language of mathematics follows its own con-
ventions and is interspersed with mathematical expressions [7]. Similarly, proofs in the Is-
abelle/Isar language are structured and include statements with terms representing assumptions
and symbolic reasoning. Therefore, the third challenge is designing a suitable annotation
scheme for (a) representing Isabelle/Isar terms and mathematical expressions in textual proofs
and (b) establishing an alignment between them. Attractive solutions come from Mathematical
Knowledge Management (MKM) and code understanding and generation. For instance, math-
ematical expressions and terms can be encoded using Presentation and Content MathML [8].
Furthermore, we can overlay our corpus with token type and other information, such as identi-
fier tagging (IT), that will allow researchers to implement masked span/identifier prediction[9]
and skip-tree training [10] in models trained with our corpus. We envisage that the third phase
of our process will address these challenges and introduce sentence and token alignments to the
IPC.

The IPC will be made public on GitHub prior to our presentation in the hope that phase 2
material (data linking natural language proofs to their Isabelle/Isar counterparts) will be useful
to researchers in machine learning for theorem proving. We intend to continuously update the
corpus (e.g. with sentence and token alignments in phase 3) and this strategy reflects our vision
that the IPC is a living corpus with standardised releases to facilitate comparative analysis of
machine learning models. We also intend to open our annotation tools to the wider community
and we invite all Isabelle users to join in the annotation effort to continuously expand the IPC.
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