
Synthetic Proof Term Data Augmentation for Theorem Proving

with Language Models

Joseph Palermo1, Johnny Ye1, and Jesse Michael Han2

1 Cash App Labs
2 University of Pittsburgh∗

Introduction

Imitation learning for the task of theorem proving is bottlenecked by the limited size of existing libraries
of formalized mathematics (e.g. mathlib [1]). Prior work utilizing language models for theorem proving
indicates that training data limitations are causing performance saturation [2, 3]. Prior work has
also demonstrated the utility of synthetic data for improving language models [4, 5, 6, 7] and for
learning theorem proving [8, 9, 10, 11, 12]. We propose using samples from trained language models
in conjunction with the Lean kernel [13] to generate novel training examples. In particular, we train
language models to generate Lean proof terms unconditioned by any theorem statement and we sample
from these models to generate collections of proof term candidates. We then apply the Lean kernel
to identify type-correct proof term candidates and infer corresponding types. From this synthetic
data we construct training examples for proof term language modelling. Augmenting training sets by
adding synthetic examples is shown to improve the performance of proof term language modeling on
a held-out test set.

Bootstrap Datasets

In order to use trained language models to generate new candidate training examples, we first create a
“bootstrap” dataset from which a model can be trained. Our examples for unconditioned proof term
language modelling (which we call unconditioned examples) have the form: PROOF <proof> EOT.
They are unconditioned in the sense that they are not conditioned on a theorem statement. We call
the dataset comprising these examples: unconditioned bootstrap. This dataset is used to train the
model that is sampled to produce synthetic examples. It is also used to train a baseline model and to
provide examples for a held-out test set.

By contrast, our examples for theorem-conditioned proof term language modelling (which we call
conditioned examples) have the form: THEOREM <theorem> PROOF <proof> EOT. We call the
dataset comprising these examples: conditioned bootstrap. This dataset is used only to train a
baseline model and to provide examples for a held-out test set.

As a data augmentation strategy, we perform tree traversal on each expression in mathlib to
identify unique sub-expressions which are also valid proofs. We convert these filtered sub-expressions
into pretty-printed text format and filter for length less than 2048 characters. We parse and type-
check these proofs to ensure that pretty-printing has not rendered them invalid and to obtain the
corresponding theorem statement.

∗work for this project was completed while at OpenAI

1



Splitting the Bootstrap Datasets

We split our bootstrap datasets into train, validation and test sets, firstly by splitting on mathlib
declaration names. We also apply a further filter to reduce the maximum similarity of training examples
to validation and test examples. Using TF-IDF [14] embeddings of our examples we remove any
validation or test example (xtest) for which:

levenstein distance(xtest, argmaxxtrain
cosine similarity(xtest, xtrain))

length(xtest)
< 0.15 (1)

The threshold value of 0.15 was determined after we found empirically that it enabled us to overfit
our training data. Our initial split of declaration names produced 207,194 train examples, 55,470
validation examples and 54,964 test examples. After the additional filtering step, 11,145 validation
examples and 10,233 test examples remain.

Creating Synthetic Examples

To generate proof candidates, we sample language models trained on the unconditioned bootstrap
dataset. We parse and type-check proof candidates, and if type-check is successful we serialize the corre-
sponding type. This process produces synthetic training examples of both the conditioned and uncondi-
tioned variety. We also generate an additional example from each proof candidate regardless of whether
or not it has passed type-checking: NON TYPE CHECKED PROOF<non type checked proof> EOT.
These examples are useful in assessing the effect type-check filtering has on data quality.

Bootstrap Training Sets vs. Augmented Training Sets

For these experiments, we train language models using Fairseq [15]. We utilize Fairseq’s implementation
of GPT-2 [16] with approximately 2 billion parameters (the so-called “big” size). We also utilize
Fairseq’s implementation of the “gpt2” byte pair encoder. We set max-tokens to 1536, use SGD with
a fixed learning rate of 0.01, set early-stopping patience to 100 epochs, and set dropout to 0.1.

After training a model on the unconditioned bootstrap dataset, we use the trained model to sample
20 million proof candidates using beam search. We set the beam search temperature to 1.3 and beam
width to 5. From the set of candidates, 1.57 % or 352,469 unique proofs passed type-check.

We create augmented datasets by randomly sampling synthetic examples without replacement and
adding them to the bootstrap datasets. Samples are added until the augmented dataset in question is
100% larger than the corresponding bootstrap dataset as measured by the number of examples in the
conditioned case and by the number of characters in the unconditioned case. We weight the additional
unconditioned examples by counting characters because the synthetic unconditioned examples can
include both type-checked and non-type-checked proofs, and the average length of non-type-checked
proofs tends to be longer (162 characters vs 275 characters on average).

We create 4 distinct augmented datasets by utilizing different combinations of synthetic examples:

• conditioned augmented: conditioned bootstrap +100% synthetic conditioned (weighted by #
of additional examples)

• unconditioned augmented (non-type-checked): unconditioned bootstrap +100% synthetic
unconditioned non-type-checked (weighted by # of additional characters)

• unconditioned augmented (50/50 type-correct & non-type-checked): unconditioned
bootstrap +50% synthetic unconditioned non-type-checked and +50% synthetic unconditioned
type-correct (weighted by # of additional characters)

• unconditioned augmented (fully type-correct): unconditioned bootstrap +100% synthetic
unconditioned type-correct (weighted by # of additional characters)

2



We use each of the 2 bootstrap and the 4 augmented datasets to train language models. Then we
evaluate each of these 6 models on our held-out bootstrap test sets, matching models trained on con-
ditioned or unconditioned examples to the conditioned or unconditioned test sets respectively. When
evaluating models trained on conditioned examples we prompt the models with theorem statements.

Training Dataset Test Loss Test Ppl. Test Accuracy

conditioned bootstrap 1.25 2.38 9.72%
conditioned augmented 1.12 2.18 16.92%

unconditioned bootstrap 1.74 3.35 N/A
unconditioned augmented (non-type-checked) 1.72 3.30 N/A
unconditioned augmented (50/50 type-correct & non-...) 1.71 3.28 N/A
unconditioned augmented (fully type-correct) 1.70 3.25 N/A

Table 1: Test loss, test perplexity, and test accuracy of the models trained on each dataset. Test
accuracy measures the % of test examples for which the generated proof matches ground truth.

We find that training on the augmented datasets results in superior metrics on our test sets. In the
unconditioned case we also find that better metrics are achieved by using training sets in which a higher
percentage of the synthetic data is type-correct. This demonstrates the improvement in data quality
afforded by using the Lean kernel as a filter. However, since only a small percentage of synthetic proofs
pass type-check, in practice we can likely expect the best possible unconditioned language modelling
metrics to be achieved by simply training on all generated examples, as such a dataset would be much
larger.

Can Increased Regularization Explain the Performance Boost?

We investigate how much of the improvement in loss associated with training on an augmented dataset
is accounted for by an increase in regularization that can be achieved with dropout. To do this we train
models on the conditioned bootstrap dataset and the conditioned augmented dataset with successively
higher levels of dropout (incrementing by 0.1), until increasing dropout no longer improves the best
achieved validation loss.

Training Dataset Metric Dropout: 0.1 Dropout: 0.2 Dropout: 0.3 Dropout: 0.4

conditioned bootstrap Loss 1.25 1.15 1.09 1.09

conditioned augmented Loss 1.12 1.04 1.01 1.01

conditioned bootstrap Perplexity 2.38 2.21 2.13 2.13

conditioned augmented Perplexity 2.18 2.06 2.01 2.02

conditioned bootstrap Accuracy 9.72% 11.47% 12.97% 14.2%

conditioned augmented Accuracy 16.92% 18.29% 20.82% 19.37%

Table 2: Test loss, test perplexity, and test accuracy of the models trained on each dataset with
varying dropout.

We find that optimal test loss is achieved at a dropout value of 0.3. Notably, even with optimized
dropout we observe a significant performance advantage from training on the augmented dataset.

Code. Source code is available at: https://github.com/joepalermo/synthetic-proof-term-data-augmentation

Acknowledgements. The authors would like to thank Jason Rute, Alok Singh, Alex Krizhevsky,
Ragavan Thurairatnam, Hashiam Kadhim, Marc Tyndel, Rayhane Mama, and Louay Hazami for
helpful discussions.

3

https://github.com/joepalermo/synthetic-proof-term-data-augmentation


References

[1] T. mathlib Community, “The lean mathematical library,” in Proceedings of the 9th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP 2020, (New York, NY,
USA), p. 367–381, Association for Computing Machinery, 2020.

[2] S. Polu and I. Sutskever, “Generative language modeling for automated theorem proving,” CoRR,
vol. abs/2009.03393, 2020.

[3] J. M. Han, J. Rute, Y. Wu, E. W. Ayers, and S. Polu, “Proof artifact co-training for theorem
proving with language models,” CoRR, vol. abs/2102.06203, 2021.

[4] A. Anaby-Tavor, B. Carmeli, E. Goldbraich, A. Kantor, G. Kour, S. Shlomov, N. Tepper, and
N. Zwerdling, “Not enough data? deep learning to the rescue!,” 2019.

[5] T. Schick and H. Schütze, “Generating datasets with pretrained language models,” 2021.

[6] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-trained transformer mod-
els,” 2020.

[7] Z. Wang, A. W. Yu, O. Firat, and Y. Cao, “Towards zero-label language learning,” 2021.

[8] M. Wang and J. Deng, “Learning to prove theorems by learning to generate theorems,” CoRR,
vol. abs/2002.07019, 2020.

[9] E. Aygün, Z. Ahmed, A. Anand, V. Firoiu, X. Glorot, L. Orseau, D. Precup, and S. Mourad,
“Learning to prove from synthetic theorems,” CoRR, vol. abs/2006.11259, 2020.

[10] Y. Wu, A. Jiang, J. Ba, and R. B. Grosse, “INT: an inequality benchmark for evaluating gener-
alization in theorem proving,” CoRR, vol. abs/2007.02924, 2020.

[11] Y. Wu, M. N. Rabe, W. Li, J. Ba, R. B. Grosse, and C. Szegedy, “LIME: learning inductive bias
for primitives of mathematical reasoning,” CoRR, vol. abs/2101.06223, 2021.

[12] V. Firoiu, E. Aygün, A. Anand, Z. Ahmed, X. Glorot, L. Orseau, L. Zhang, D. Pre-
cup, and S. Mourad, “Training a first-order theorem prover from synthetic data,” CoRR,
vol. abs/2103.03798, 2021.

[13] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer, “The Lean Theorem Prover
(System Description),” in Automated Deduction - CADE-25 (A. P. Felty and A. Middeldorp, eds.),
(Cham), pp. 378–388, Springer International Publishing, 2015.

[14] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,” in Proceedings
of the first instructional conference on machine learning, vol. 242, pp. 29–48, Citeseer, 2003.

[15] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli, “fairseq: A
fast, extensible toolkit for sequence modeling,” CoRR, vol. abs/1904.01038, 2019.

[16] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are
unsupervised multitask learners,” 2019.

4


