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Automatic program verification has been used in safety-critical industrial software for
decades. Constrained Horn Clauses (CHCs) [7] as an intermediate verification language is
a standard representation of program verification problems. The program is safe if and only if
the CHCs are satisfied. In practice, it is essential to extract information from program features
(e.g., loops, control flow, or data flow) to guide the CHC solvers. For instance, the authors
of [9] and [4] perform static analysis systematically to extract semantic program features (e.g.,
loop variables) to guide refinement process in the counterexample-guided abstraction refine-
ment (CEGAR) [3] based solver. In recent years, along with breakthrough practices in deep
learning [10, 8, 6, 20], many studies [19, 2, 14, 15, 19] have introduced deep learning methods
to guide program verification and produce promising results. In particular, since graphs can
represent highly structured relations naturally, some closely related fields, such as automatic
reasoning, theorem proving, and SAT solving, begin to use the graph to represent logic formulas
and apply graph neural networks (GNNs) [1] to learn the features to guide the solving process.
Works such as FormulaNet [21], LERNA [13], NeuroSAT [17, 18], [12], and [11] have used this
graph-based framework to improve their results by various learning tasks, e.g., premise selection
and unsat-core prediction. However, to the best of our knowledge, we did not see any study
which encodes CHCs to graph representations and use GNNs to learn the program features.

We believe GNNs can learn useful program features from graph represented CHCs to guide
CHC solvers. In this work, to evaluate our assumption, we first answer two preliminary ques-
tions: (1) What kind of graph representation is suitable for CHCs? (2) Which kind of GNN is
suitable for learning CHC graph representations?

To answer the first question, we have designed two graph representations (see Figure 1)
of CHCs. Our constraint graph (CG) representation emphasizes the syntactic information of
CHCs by constructing abstract syntax trees for constraints and building binary connections
for relation symbols and their arguments. Our control- and data-flow hypergraph (CDHG)
emphasizes semantic information of programs by using (ternary) hyperedges to represent the
flow of control and data. To better express control- and data-flow, we construct CDHG from
normalized CHCs. The normalization adding extra clauses to the original CHC but retains
logical meaning.

For the second question, we introduce a new Relational Hypergraph Neural Network (R-
HyGNN) architecture which is an extension of a message-passing GNN, namely, Relational
Graph Convolutional Networks (R-GCN) [16]. In R-HyGNN, messages exchanged between
nodes are computed from the representations of all nodes connected by typed edges. Then, the
messages from all typed edges are aggregated to update the node representations.

To evaluate our framework, we introduce five proxy tasks (see Table 1) with increasing
difficulties. Task 1 is a trivial sanity check, evaluating whether models can recover information
from the initial node features. Task 2 evaluates the ability of models to handle counting
problems in the overall graph. Task 3 requires the models to answer basic questions about
the wider graph structure. Task 4 is significantly harder than the previous task, requiring the
model to infer if a program variable is bounded from below or above. Finally, Task 5 is much
harder, as it requires implicitly identifying counter-examples (CEs) traces. Moreover, we hope



Exploring Representation of Horn Clauses using GNNs Liang, Riimmer and Brockschmidt

CHC for CG:

L(z,y,n) + L(z',y',n') Az #0Az=2"—1Ay=9y -1
Normalized CHC for CDHG:

L(z,y,n) « L'(a',y/,n') Az #0A Az =2" -1 Ay=4y —1
L'(z',y,n') « L(z,y,n) ANa' =z Ay =yAn' =n

DFHE
RsA TS
L|le—
7S] [—RsA—(rsay
O
I \RSA p 1 DFHE
CFHE 7‘3@3 ’iu'ﬁ/ DFHE

CFIHE
| 7 a4 —4 DFHE
I

e
G -

Figure 1: A CHC and the corresponding normalized CHCs are in the left upper corner. The
CDHG constructed from the normalized CHCs is in the left lower corner. The CG for the
CHC is on the right side. The texts on nodes and edges indicate the types of nodes and
edges. To better illustrate the graphs, we add the blue boxes with text on nodes to relate the
corresponding concrete symbol names in CHCs.

Task description CG CDHG

1. If a node is an argument of a 100% (95%) 99% (73%)
relation symbol

2. How many times a relation 1.0 4.2

symbol occurs in all clauses

3. If a typed node is in a cycle 96% (70%) 99% (51%)

4. If a relation symbol argument | upper lower upper lower

has upper and lower bound 91% (80%) | 91% (75%) | 94% (75%) | 94% (68%)
5. If a clause occurs in some or | some all some all

all minimum CEs 95% (85%) | 84% (53%) | 96% (86%) 90% (55%)

Table 1: Description and experimental results for five proxy tasks. Task 2 performs regression
task on nodes and is measured by mean square error, while other tasks perform binary classi-
fication task on nodes and are measured by accuracy. Both the fourth and fifth task consists
of two independent binary classification tasks. The values in parentheses are the ratios of the
dominant labels in the binary data distribution. Note that the label distribution differs for the
two graph representations, as CDHGs are constructed from normalized CHCs.

that learning models on the five representative proxy tasks can reduce the bias from adapting
to a particular application.

The test data is extracted from 8705 linear and 8425 non-linear Linear Integer Arithmetic
(LTA) problems in CHC-COMP repository (see Table 1 in the competition report [5]). We
divide the extracted dataset to train, valid, and test set by 60%, 20%, and 20%, respectively.
The experimental results on the test set are shown in Table 1. As expected, for both graph
representations, the performance of GNN models decreases along with the increasing difficulty
of the tasks. However, even for the hardest (fifth) task, the accuracy is far higher than predicting
the data distribution (values in the parentheses in Table 1), indicating that the models learn
more than trivial patterns. In particular, we see a slight advantage of using the hypergraph
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representation (CDHG) comparing with binary graph representation (CG). We plan to use this
framework to support predicate selection of CEGAR-based program verification.
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