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Modern automated theorem provers (ATPs) for first-order logic, such as E [6] or Vampire [5],
usually start a proof search by trying to classify the input problem so that they can use strategies
that fit the problem best. However, not only are there different problems, each problem also
commonly consists of various (semi)independent parts that should be treated differently. The
provers are able to treat the most common special cases, like equalities or arithmetic, specifically,
but no general approach exists. Although a guidance based on various machine learning models
provides a partial solution to these problems, because such models can, in principle, dynamically
adapt their guidance as the proof search evolves, it has only been of limited success so far.
Therefore, it seems natural to study these issues directly to better understand them.

In [2], we made some initial steps in this direction; we try to detect components in unsuccess-
ful proof attempts, run these components individually, and then use the best obtained clauses
from these individual runs to complete the proof. This approach seems promising, but it is hard
to analyze what is actually happening inside. A key issue being that detecting components in
our setting is an unsupervised task with no ground truth available. For that reason, we decided
to create a dataset that allows us to better analyze this behavior with the available training
and testing examples.

Although there are various mathematically well-defined ways to combine two (or more) com-
ponents into one problem, we take advantage of already available mathematical formal libraries
and created a natural dataset with possibly many types of components. We take the Mizar
Mathematical Library, which can be exported to first-order logic, and hence have a long list
of problems (theorems or lemmata) with their dependencies. Many of these problems can be
proved by ATPs (various versions of E, ENIGMA, Vampire,...) using a reasonable premise
selection. Moreover, these proofs can be analyzed, and we obtain for each problem a minimized
set (or more sets) of dependencies required for the proof. For example, we have a theorem T (ex-
ported from Mizar) that is automatically provable from the lemmata Ly, ..., L, (also exported
from Mizar) by an ATP. Assume that L; and Lo are two lemmata from different mathematical li-
braries. Furthermore, L; is provable from L1, ..., L7 and L is provable from L3, ..., L%, where
Li,...,L7 and L}, ..., L% have no overlap or insignificant overlap. Then we can expand L; and
Ly in T, so a new expanded problem is to prove T from Li,... L7 L, ... L% Ls, ..., L,. This
new problem has well-defined components (the expansions of L; and Ly) as we wanted. In fact,
we can produce many such datasets depending on requirements like number of components,
overlap of components, size of expansions, ...

It is possible to understand exported Mizar problems as a large graph in which the nodes
are first-order formulae and the edges show dependencies; an edge from L to T means that L
was used in a proof of T. In fact, we usually have more types of edges because we have more
minimized solutions to a problem. With such a graph, we can easily produce the expansions
described previously. In our particular case, we obtain a graph with 67795 nodes, where 29687
nodes are leaves (having no dependencies) and 19334 nodes are roots (not used in other proofs).
Although the number of roots may seem a bit high, it is because we are only interested in
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(a) A common situation. (b) A good situation.

Figure 1: Processed clauses (nodes) and their derivations (arrows) in two successful runs are
shown. Red (green) nodes correspond to clauses obtained from expanded Lemma 1 (2) including
derived clauses that use only expanded Lemma 1 (2) as their dependencies. Brown clauses
depend only on clauses different from Lemma 1 and 2 expansions in their derivations. Orange
clauses depend on a mixture of previous types of clauses. An arrow from c¢; to ¢y means that
c1 was used in the derivation of ce. The final contradiction is the gray node.

problems that can be proved by ATPs, and hence many real dependencies may be lost. An
advantage of such a graph is that train/test splits are easy to define. One way is that we, for
example, randomly split root nodes into two parts—train and test roots. All nodes having a
path to a train root (or are train roots themselves) are now called train nodes. On the other
hand, remaining nodes, which have no path to a train node (and hence they are test roots
or have a path to a test root), are test nodes. Clearly, there are more train nodes than test
nodes. We obtain a fair split of train and test datasets by expanding only train and test nodes,
respectively. In our example, we may obtain 275K possible expansions for the train dataset
and 5K possible expansions for the test dataset; however, they correspond to approximately
3K unique problems on the train dataset and roughly 100 unique problems on the test dataset,
because there are many possible ways to expand a problem.

Having such a dataset enables further analysis of algorithms used to obtain components in [2]
and compare them with intended components (our expansions). A clause selection guidance
based on GNNs!, see [4], allows one to extract representations of individual clauses in a latent
space and then identify components there, moreover, we can visualize them and also display
intended components, see Figure 1. In Figure 1la we see a common situation where it is hard to
distinguish both expansions. Sometimes, like in 1b, they are reasonably separated. However,
the former situation is much more common than the latter. This improves when we retrain our
algorithms using the new dataset, however, preliminary results show that further analysis of
our pipeline is still necessary.

Clearly, our dataset is useful for many other experiments, including conjecturing (recon-
structing Ly and Ls), and we will present some preliminary results in this direction.

INote that GNNs are useful for similar problems that involve components, as was recently observed [7]
that GNNs align with dynamic programming. Instead of learning algorithms, for example, in combinatorial
optimization, from scratch, it is beneficial to learn their individual subroutines (modules) separately, cf. [1, 3].



Analyzing Proof Components Chvalovsky and Urban

References

1]

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovié¢. Combinatorial optimization and reasoning with graph neural networks. In Zhi-Hua
Zhou, editor, IJCAI-21, pages 4348-4355. International Joint Conferences on Artificial Intelligence
Organization, 8 2021. Survey Track.

Karel Chvalovsky, Jan Jakubuv, Miroslav Ol§dk, and Josef Urban. Learning theorem proving
components. In Anupam Das and Sara Negri, editors, TABLEAUX 2021, pages 266-278, Cham,
2021. Springer International Publishing.

Andrew Dudzik and Petar Velickovic. Graph neural networks are dynamic programmers. CoRR,
abs/2203.15544, 2022.

Jan Jakubuv, Karel Chvalovsky, Miroslav Olsdk, Bartosz Piotrowski, Martin Suda, and Josef Ur-
ban. ENIGMA anonymous: Symbol-independent inference guiding machine (system description).
In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th Interna-
tional Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume
12167 of Lecture Notes in Computer Science, pages 448-463. Springer, 2020.

Laura Kovécs and Andrei Voronkov. First-order theorem proving and Vampire. In Natasha Shary-
gina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages 1-35. Springer, 2013.

Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middeldorp, and Andrei
Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735-743. Springer, 2013.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, K. Kawarabayashi, and Stefanie Jegelka. What
can neural networks reason about? In ICLR, 2020.



