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1 Motivation: Machine Learning in Theorem Proving
Applications of machine learning (ML) in automated theorem proving (ATP) often involve
training of models from large datasets. This training is usually performed by some machine
learning framework, and there are many frameworks to choose from. However, many machine
learning methods are parametrized and quite often using the right hyperparameter values is
essential to achieve good prediction results. In our experiments with the ML theorem prover
ENIGMA [6, 7, 3, 5], we have selected hyperparameter values based on our experience, or we’ve
performed a grid search over some set of possible values. Additionally, as a part of our recent
experiments with ENIGMA on Isabelle [4], we have implemented an automated hyperparameter
selection tool lgbtune.1 While this tool has been successfully used during the experiments, its
performance has never been evaluated in detail, and this is the main topic of this work.

ENIGMA is a machine learning guidance system for automated theorem prover E [9]. E’s
input is a first-order logic problem consisting of axioms and a conjecture to be proved. This
problem is translated to first order clauses, and a proof search based on a given clause loop
is launched in the space of clauses. In each step of this proof search, one unprocessed clause,
called given, is selected for processing. The given clause selection is one of the most important
choice points performed during the proof search, and this is where ENIGMA guides the prover.

ENIGMA experiments are done using the training/evaluation loop. Given a set of benchmark
problems P, we run E over all problems P. We analyze successful proof searches, and clauses
selected during the search are classified as useful and useless. The clauses that participate
in the final proof are considered useful, while the others are useless because their processing
might have been avoided. On thusly labeled clauses, we train a machine learning model M to
distinguish useful clauses from useless ones. ModelM is then used to guide next E search over
problems P. This results in new successful proof searches used to construct new training data
for the next iteration of the training/evaluation loop.

As the underlying machine learning method, ENIGMA can use decision trees or graph neural
networks. In this work we concentrate on hyperparameter setting for training of decision tree
models. ENIGMA support two decision tree frameworks: XGBoost [2] and LightGBM [8].
Recently, we favor LightGBM because it is faster and more stable on large training data. The
data input for the LightGBM trainer are labeled clauses (as useful/useless) represented by
numeric feature vectors. The training data we encounter with ENIGMA are quite specific and
consist of a large amount (millions of clauses) of long (single vector length over 60k) but sparse
vectors (around 1% of non-zero values). Apart from the training vectors, the LightGBM trainer
take other hyperparameters as an input. We target this topic in the rest of this work.
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1https://github.com/ai4reason/enigmatic/blob/master/enigmatic/lgbtune.py
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2 LightGBM Hyperparameter Tuning
LightGBM supports few dozens of hyperparameters that influence the model training process.
While many of them might be safely used with their default values, setting of some hyperpa-
rameters is crucial for success and to prevent overfitting. While there exist basic guidelines
for setting of hyperparameters, setting them in practice often requires experience and under-
standing of the training process. There are, however, automated tools to search for suitable
parameter values like Optuna [1] or FLAML [10] which support LightGBM. For our experiments
with ENIGMA, we have developed our tool lgbtune to search for suitable values of LightGBM
hyperparameters targeted to our specific ATP needs.

Our tool lgbtune is implemented in Optuna. Given the training data, it keeps a small
amount of the training data (5%) for a later independent evaluation, and it trains the models
only on the rest. Then it proceeds in phases when it tries to search optimal values for selected
hyperparameters, different ones in each phase. In each phase, several values of tuned hyperpa-
rameters are tried, and the resulting models are evaluated on the part of input data not used
for training. The best hyperparameter values are then fixed in the phases to follow.

Some of the hyperparameters are dependent, that is, the optimal value of one parame-
ter might depend on the value of another one. For example, the optimal number of tree leaves
might depend on the maximal tree depth. We tune dependent parameters together in one phase.
In phase (1) we tune probably the most influential parameter, that is, the number of leaves
(leaves) in a decision tree. We set the tree depth (max depth) to unlimited and thus we elimi-
nate one dependent parameter. In other phases we then tune (2) randomized feature sampling
(bagging_fraction, bagging_freq), (3) the minimal number of data in leaves (min data),
and (4) L1/L2 regularization terms (lambda l1, lambda_l2). Value selection mechanism and
distribution are derived from Optuna.

3 Machine Learning and ATP Evaluation
In lgbtune, the quality of a model is estimated based on its accuracy on the shelved training
data. This ML evaluation should correlate with the actual performance of the prover guided
by the model, that is, with ATP evaluation. However, this is not always the case, because
the training data are typically unbalanced, and more than 90% are typically negative training
samples (clauses classified as useless). Hence it is crucial to compute separately accuracies
on positive and negative testing samples. Moreover, it seems that the positive accuracy is
even more important for ATP evaluation. This can be explained by the behavior of E, where
accidental processing of a single useless clause does not need to do much harm, while postponing
of the processing of a useful clause can effectively block any path to success. Hence we measure
the quality of a model as 2pos + neg, where pos and neg are positive and negative accuracies.

We have successfully used lgbtune during our recent ENIGMA experiments [4], where it
helped us to increase the accuracy of models by more than 5%. In this presentation, we would
like to present our tool, and, additionally, perform an extended evaluation and testing of our
tool (the extended evaluation is currently in progress). We will evaluate the ATP performance
of trained models and test our assumptions about the correlation of ML and ATP performance.
Furthermore, we would like to evaluate the impact of a different phase orders during the tuning,
and the importance of tuned parameters. This could help us to decide which phases should
be given more time, and which phases should be removed. Finally, lgbtune is motivated by
LightGBM plugins from Optuna and FLAML, and we would like to compare directly with their
performance. All the experiments will be targeted to data from our ATP experiments.
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