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1 Introduction

When formalizing mathematics in an interactive theorem prover, such as the Coq [1] proof
assistant, it is necessary to have an intuition on how the available proof actions change the
proof state. In particular users may have an idea that to transform the current proof state to
a different one, a particular tactic might be the right one to use.

In this paper, we regard the changes to a proof state made by the tactic application as the
semantic of that tactic. The purpose of our study is to predict the tactic based on its semantic.
Assume there is a triple (ps, t, {ps′}1..n), where ps, t, {ps′}1..n are a Coq state, the tactic applied
to ps by a Coq user, and the after states caused by the tactic application, respectively. We aim
at building a machine learning model to predict a tactic t′ such that ps transforms to {ps′}1..n
by the application of t′. To ensure that t and t′ lead to the same after states, we run t′ in Coq
and compare with t.

There are several motivations behind our project. First, the task can be directly applied for
tactic suggestion given a human’s intuition for the next state. For a Coq beginner, it is quite
common that he can imagine the next state but cannot determine how to select a suitable tactic
to reach the goal. However, understanding Coq’s manual may be challenging for beginners. If he
can copy the before state from the Coq editor, convert it to the imaginary after state, and input
them into our system, we will be able to automatically suggest the tactics with the expected
behavior. Meanwhile, a medium-level Coq programmer may want to discover a single tactic to
substitute an awkward tactic sequence. Even for an expert, when he encounters an unfamiliar
domain, he needs our system to advise likely helpful tactics.

Second, the task serves as an initial step to a new formal verification strategy. When
a mathematician tries to prove a theorem, he first thinks of several intermediate goals and
then fills the gaps by order. However, nowadays proof assistants cannot skip tactics between
intermediate goals. We can extend our system to predict a tactic sequence from one state
to another. Afterwards, the human expert can merely specify the states that he thinks are
important to complete the proof and ask our system to erase the gaps.

Finally, since we encounter our own challenges in precisely characterizing the transition
between before and after states, the approaches developed by us can also be applied to other
machine learning domains. Take fault detection [3] for instance, we can apply our differential
techniques to the images before and after the fault occurs. Then, the results can be input into
a learning model to predict the category of fault.
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2 Tactic Characterizations

We characterize the semantic of tactics as features and Coq strings as the input for random
forests [7] and GPT-2 [5], respectively. The feature extraction techniques on Coq terms are
the same as our previous work [7]. Large-scale pretrained transformers such as GPT-2 have
achieved significant progress in various domains [2]. We evaluate GPT-2 and random forests to
make a comparison.

We consider three feature extraction approaches. The first approach computes the differ-
ences between the state features of ps and {ps′}1..n. From ps, we extract a set of features F .
We also extract n sets of features {F}1..n from {ps′}1..n. If a feature f exists in F but does not
in any Fi, we regard it as a disappeared feature. Conversely, if there is an Fi with a feature f
that is not in F , then f is an appearing feature. The tactic characterization is the union of all
disappeared and appearing features.

Second, we extract features from the newly defined existential variables in proof terms. In
Coq, we write tactics to construct a proof script to prove a theorem. Actually, the tactics help
to complete a proof term. The relationship between proofs and proof terms is based on the
Curry-Howard correspondence [6]. An incomplete proof term may contain several existential
variables. Some are defined, and others are undefined as holes. A tactic fills some holes with
Coq terms and may generate several new holes. A proof term is completed once all the holes
have been filled. We obtain the features from the terms defined in the holes by the tactic as its
characterization.

Finally, we perform first-order anti-unification [4] on the before and after states to find
the substitutions. A term g of two terms t1 and t2 is called a generalization if there are
substitutions σ1 and σ2 such that σ1g = t1 and σ2g = t2. Anti-unification aims to find the
least general generalization lgg such that for any generalization g′ of t1 and t2, there exists a
substitution σ that makes σg′ = lgg. We extract the features from the Coq terms present in
the substitutions(σ1 and σ2) and the lgg as the input to our model.

For GPT-2, we merely apply anti-unification to generate strings. We convert the lgg and
substitutions to strings and input them into the model.

3 Experimental Evaluation

Our dataset is composed of the proof states (158, 494) of all the lemmas (11, 372) in the Coq’s
standard library. The lemmas were randomly divided into three subsets for training, validation,
and testing in an 80-10-10 ratio. Each subset includes the states of the corresponding lemmas.
For random forests, we optimize parameters on the training and validation partitions, which
is depicted in Figure 1. Afterwards, we build models with the best hyper-parameters learned
from the training dataset and make predictions for the test dataset. We also fine-tune the
smallest GPT-2 for each characterization. Every model is executed for 25 epochs, and we store
the snapshot with the best accuracy on the validation dataset to synthesize tactics for the test
data. All the GPT models utilize the same parameters: a batch size of 32, no weight decay,
and the learning rate of 0.0003 with a linear schedule and the first 20% steps for warming up.
Figure 2 depicts the average training loss per step and validation accuracy during fine-tuning.

Table 1 shows the results on the test data. Unsurprisingly, only learning from before states
performs worst since it contains little information of the influences of the tactic. The best
accuracy achieved by GPT-2 is 10.47% better than that of random forests. This confirms the
power of the state-of-the-art neural network. Anti-unification does not work well for random
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Figure 1: Results of hyper-parameter tuning for random forests. The accuracy denotes how
often we predict a tactic that is the same as the tactic in the dataset.
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Figure 2: Training loss and validation accuracy of GPT-2.
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Table 1: Results on the test dataset. “Same tactic” denotes that the prediction is exactly the
same as the tactic in the library. “Same change” checks how often the prediction makes the
same transformation.

model accuracy(%) before
before
after

feature
difference

proof
term

anti
unification

random forests
same tactic 36.917 44.563 49.723 47.480 47.727
same change 43.225 52.166 59.344 56.024 55.507

GPT-2
same tactic 39.154 56.215 60.300
same change 45.356 65.319 69.814

3



Tactic Characterizations by the Influences on Proof States Zhang and Blaauwbroek

forests but obtains excellent performance for GPT-2. The reason may be that converting anti-
unification to appropriate features is challenging.
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