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1 Introduction

In this work, we demonstrate the feasibility and usefulness of autoformalization in the context
of the newly introduced MiniF2F [10] benchmark. We use large language models to translate
several thousands of informal problems into Isabelle and use them to improve our neural theorem
prover. We find that transformer-based [7] language models trained on a large amount of web
data are capable of formalizing mathematical competition problem statements with a relatively
high success rate and the resulting statements can be used for creating new correct proofs that
can be used for fine-tuning a neural theorem prover for improved proof automation. Using this
methodology, we achieve a new state of the art on the MiniF2F benchmark.

2 Autoformalization using Large Language Models

Inspired by the success of large language models (LLMs) for synthesizing computer code by co-
training on both natural language and code on web-scale data, we explore the capabilities of large
language models (LLMs) that were trained on a large amount web data to turn natural language
mathematics into formalized theorems (Isabelle theorems in this case). This is essentially a
machine translation task [8] in which the input language is English and output language is
formal code used by the interactive proof assistant Isabelle [9].

In particular, we exploit the impressive few-shot capability of LLMs by providing a few
examples of the translations which improves the quality of our translation. We ran our initial
experiments with using Codex and prompted the language model for the task of formalizing
the informal statements. Here are two examples of automatically formalized theorems, with
prompts provided in the Appendix.

Natural language version: ”Prove that there is no function f from the set of non-negative
integers into itself such that f(f(n)) = n + 1987 for every n.” Translate the natural
language version to an Isabelle version:

theorem
fixes f :: "nat ⇒ nat"

assumes "∀ n. f (f n) = n + 1987"

shows False
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Natural Language version: ”When all the girls at Madeline’s school line up in rows of
eight, there are seven left over. If instead they line up in rows of four, how many are left
over? The final answer is 3.”
Translate the natural language version to an Isabelle version:

theorem
fixes n::nat

assumes "n mod 8 = 7"

shows "n mod 4 = 3"

Remarkably, we see in both examples, Codex was able to translate the natural language
statement into Isabelle formal theorems perfectly. In the first example, the model can understand
what it means by the phrase “to itself”, and correctly formalize the domain of function:
f :: ”nat⇒ nat”. The second example is even more remarkable. First of all, a formal translation
of a grade school math problem should not ever exist in the pre-training corpus, as this type of
mathematics is not of interest to formal mathematicians. Second, the examples in the prompt
we provide also are not of this type of problem. It is hence remarkable that the model is capable
of extrapolating to this type of statement – a true extrapolation. This shows a great promise of
using LLMs for doing auto-formalization.

3 Autoformalization Improves Neural Theorem Proving

To study the usefulness of the formalized statements, we explore if one can improve neural
theorem provers by training the model on automatically translated theorems. In particular, we
study auto-formalization on a constrained setting – mathematical competition problems, where
it has little requirement in formalizing the definitions and background theory.

For our neural theorem prover, we use a recently introduced theorem prover LISA [4] that
proves Isabelle theorems by language modeling the best action conditioned on the current proof
state. The input of the transformer-based neural network is the proof state and the output
is the tactic application to be applied. This network is trained on existing human proofs. At
inference time, a best-first search is performed using the neural network as an action generator.

Table 1: Proof rates on MiniF2F Benchmark

Model valid test

PACT [2] 23.9% 24.6%
FMSCL [5] 33.6% 29.6%
LISA [4] 28.3% 29.9%
LISA + AF 36.1% 34.0%

We use Codex [1] auto-formalize 3908 mathematical problems belonging to category algebra,
intermediate algebra, and number theory from the training set of MATH [3]. Out of them,
3363 of the auto-formalized theorems are syntactically correct. We then use our neural prover
trained on Isabelle corpus (AFP and Isabelle Standard library) to prove these theorems, and
23.3% of them can be proven. This gives us 782 new provably verified theorems along with their
proofs for us to train our neural prover further. This form of training on one’s own generated
data is known as expert iteration, and was already used in prior works [6, 5]. However, unlike in
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Polu et. al. [5], where one perform expert iteration on a set of problems manually translated by
human, we here use LLMs to auto-formalize the theorems.

After one epoch of training on the proofs of 782 theorems, we evaluated the neural prover
on miniF2F [10], a recently introduced benchmark containing 488 mathematical competition
statements manually formalized by humans. Some of those problems come from the valid
and test set of MATH, and others come from previous International Mathematical Olympiad
competitions or AoPS1.

The results are shown in Table 1. LISA refers to the model before we trained on the
autoformalized dataset, and LISA + AF refers to the model after one epoch of training on
the 782 theorems. We see that by simply training on one epoch of the proved auto-formalized
theorems, we can achieve a significant improvement in proof rate (from 28.3% to 36.1% on
miniF2F-valid), and a new state-of-the-art performance on this benchmark.

4 Conclusion

For the first time, we have demonstrated that autoformalization is indeed feasible at least
for high school mathematics competition problems and the translated results are useful for
improving the performance of neural theorem provers.

However, our method is not capable of creating whole theories or autoformalization of
facts that need to rely on libraries the language model has not been trained on. Full blown
autoformalization of mathematical text will require new methods, especially proper training
methodologies and utilizing newly introduced code by retrieval augmented language modeling.
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A Prompt

Natural language version: “Let z = 1+i√
2

, find (
∑1

i=1 2(zi
2

)) · (
∑1

i=1 2( 1
zi2

)). The final

answer is 36.”
Translate the natural language version to an Isabelle version:

theorem
fixes z::complex

assumes h0: "z = (Complex (1/sqrt 2) (1/sqrt 2))"

shows "(
∑

k::nat=1..12. (z^(k^2)))

* (
∑

k::nat=1..12. 1/(z^(k^2))) =36"

Natural language version: “Determine the value of ab if log8 a + log4 b
2 = 5 and log8 b +

log4 a
2 = 7. The final answer is 512”. Translate the natural language version to an

Isabelle version:

theorem
fixes a b ::real

assumes "(ln a) / (ln 8) + (ln (b^2)) / (ln 4) = 5"

"(ln b) / (ln 8) + (ln (a^2)) / (ln 4) = 7"

shows "a * b = 512"
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