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Introduction Neural networks (NNs) are versatile tools which established state-of-the-art
in multiple domains. In particular, one of the spectacular advances achieved with use of NNs
has been in natural language processing (NLP). Today, the dominating kind of a neural model
used in this domain is based on the transformer architecture [10]. It was also observed that
neural architectures designed for NLP have ability to deal with tasks of symbolic (or algorithmic)
nature. These include: recognizing propositional entailment [2], computing integrals [4], solving
differential equations [1], normalizing polynomials [6], autoformalization [11], premise selection
[5], differentiation, solving linear equations, number base conversion, and many others [9].

It is not well understood how neural models are able to perform algorithmic tasks well. It
is also unclear what features of a neural architecture make it more suitable for such tasks. In
this work, we make a step towards understanding this. We compare two different architectures
– encoder-decoder versus decoder-only – and two different modes of training – starting from
scratch versus fine-tuning a model pre-trained on a natural language dataset. We also want to
see what is performance of a modern transformer model trained in a practical, limited setting:
training for no more than two days on a single GPU.

Data We took 8 different datasets representing mathematical tasks of varied difficulty: addi-
tion, multiplication, differentiation, integration, solving linear equations, division, number base
conversion, and normalizing polynomials. The first two were created for the purpose of this
work and the remaining six were taken from other works [9, 4, 6]. Each dataset consists of
input-output examples, where input is a query to the model and output in an answer that the
model is trained to produce. For each of the datasets a hold-out testing set of 10000 examples
was drawn. Below there are examples of input-output pairs for the linear equations dataset:

input output

Solve - 3 8 * h - 6 * h + 4 7 8 + 4 0 2 = 0 for h . 9

Solve 2 9 * i + 1 3 0 0 = - 3 * i + 4 1 * i - 7 4 * i for i . - 2 0

Solve 1 0 4 9 * d = 4 3 1 2 + 5 1 2 9 for d . - 4 5

We experimentally established that treating single digits as tokens is better then taking whole
numbers as tokens, and we preprocessed all the datasets accordingly.

Transformer models We compare two different state-of-the-art transformer architectures:
1. GPT2 [7]: a decoder-only architecture with 124 million of trainable parameters.
2. T5 [8]: an encoder-decoder architecture (closely following the original transformer model

described in [10]). We use the T5-small version of this model with 60 million parameters.
Both GPT2 and T5 proved to perform very well on a range of NLP tasks. For both of them

there are available high-quality pre-trained checkpoints released by the authors of the models.1

∗The author was supported by the grant of National Science Center, Poland, no. 2018/29/N/ST6/02903.
1They are available in Huggingface: https://huggingface.co/gpt2, https://huggingface.co/t5-small
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dataset T5 GPT2

pretrained untrained pretrained untrained

addition 86.74% 96.95% 98.60% 99.26%
multiplication 24.10% 47.58% 46.54% 68.00%
division 67.23% 70.98% 72.62% 77.16%
number base conversion 0.03% 2.58% 1.63% 3.52%
solving linear equations 37.56% 17.62% 45.57% 47.40%
differentiation 98.84% 95.05% 99.80% 99.75%
integration 26.65% 35.88% 79.70% 81.80%
polynomial normalization 58.13% 90.83% 89.35% 92.93%

Table 1: Final testing accuracy of neural language models tested on the eight datasets.

Experimental setup We perform the experiments using the Huggingface framework [12].
In each experiment we train with the Adam optimizer [3] with parameters: learning rate =
1e-5, β1 = 0.9, β2 = 0.999, ϵ =1e−8, weight decay = 0. When we fine-tune a pre-trained
model, we must use a tokenizer that comes along with the model – in cases of both GPT2
and T5 these are pre-trained byte pair encoding tokenizers. When training from scratch we
use a simple tokenizer splitting on whitespaces. All trainings were performed using GeForce
GTX 2080 Ti GPUs. We limit all the trainings to passing through a model 64 million training
examples.2 All data and scripts required to reproduce the results presented here are available
at https://github.com/BartoszPiotrowski/transformers-for-mathematics

Results and conclusions Figure 1 shows training curves for one of the datasets – linear
equations. Table 1 shows the final testing accuracy for all the tasks. There are two conclusions:

1. In almost all cases, the pre-trained versions of models performed worse than the models
trained from scratch. It likely means that the data on which the models were pre-trained
does not contain much information relevant for dealing with mathematical problems.
There are, however, two exceptions: for T5 and datasets on differentiation and solving
linear equations. Especially for the latter the difference is much in favour of the pre-
trained version of the model. As for now, we do not have explanation for this.

2. GPT2 performed better than T5 for all the datasets. It means that decoder-only architec-
tures are capable of learning mathematical tasks, despite the fact that in most of the cited
related works encoder-decoder architectures were used. However, it is unclear whether the
superior performance of GPT2 was due to the different architecture, or possibly because
of larger number of trainable parameters. Further experiments would be needed.
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Figure 1: Training loss and accuracy on the linear equations dataset.

2This is a practical limit – full training takes then, depending on a dataset, between 4 and 50 hours.
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