
Evolutionary Computation for Program Synthesis in

SuSLik

Yutaka Nagashima1

Independent Researcher, Cambridge, the United Kingdom
united.reasoning@gmail.com

Abstract

A deductive program synthesis tool takes a specification as input and derives a program
that satisfies the specification. The drawback of this approach is that search spaces for
such correct programs tend to be enormous, making it difficult to derive correct programs
within a realistic timeout. To speed up such program derivation, we improve the search
strategy of a deductive program synthesis tool, SuSLik, using evolutionary computation.
Our cross-validation shows that the improvement brought by evolutionary computation
generalises well to unforeseen problems.

1 Deductive Program Synthesis

A far-fetched goal of artificial intelligence (AI) research is to build a system that writes computer
programs for humans. To achieve this goal, researchers take two distinct approaches for program
synthesis: deductive program synthesis and inductive program synthesis.

Both approaches attempt to produce programs requested by human users. The difference
lies how they produce programs and the guarantee of the resulting programs: deductive syn-
thesis tries to deduce programs that satisfy specifications, while inductive program synthesis
tries to induce programs from examples. A notable example of inductive program synthesis is
the automated spreadsheet data manipulation implemented as an add-in for Microsoft Excel
spreadsheet system [1].

While such inductive synthesis alleviates the burden of implementation by guessing programs
from given input-output examples, in inductive synthesis the resulting programs are never
trustworthy: there is always a risk that incorrect generalisation results in programs that are
correct for the present examples but not for future cases.

Deductive synthesis overcomes this limitation with formal specifications: it allows users to
formalise what they want as specifications, whereas inductive synthesis tools guess how pro-
grams should behave from examples provided by users. Thus, in deductive synthesis providing
formal specifications remains as users’ responsibility. The upside of deductive synthesis is,
however, users can obtain correct programs automatically upon success. This correctness as-
surance is particularly useful when it comes to synthesising imperative programs with pointers,
as manually developing heap-manipulating programs is known to be error-prone.

SuSLik [4], for example, is one of such deductive synthesis tools. It takes a specification
provided by humans and attempts to produce heap-manipulating programs satisfying the spec-
ification in a language that resembles the C language. Internally, this derivation process is
formulated as proof search: SuSLik composes a heap-manipulating program by conducting a
best-first search for a proof goal presented as specification. The drawback is that the search
algorithm often fails to find a proof within a realistic timeout. That is, even we pass a speci-
fication to SuSLik, SuSLik may not produce a program satisfying the specification. According
to Itzhaky et al. [2],



Genetic Algorithm for Program Syntehsis in SuSLik Nagashima

experiment gen-0 gen-20 gen-40
1st (32) 18 16 15
2nd (41) 21 21 15
3rd (31) 18 16 15
4th (31) 16 13 13

(a) Unsolved problems in the training set

experiment gen-0 gen-20 gen-40
1st (33) 22 16 16
2nd (24) 17 16 15
3rd (34) 22 18 16
4th (34) 24 21 18

(b) Unsolved problems in the validation set

different synthesis tasks benefit from different search parameters, and that we might
need a mechanism to tune SuSLik ’s search strategy for a given synthesis task.

2 Evolutionary Computation for Better Search Strategies

current generation

A B
A

E F

other winnerschampion losers

G H

next generation

A A’A C B’

mutated 
championchampion other winners

C’

mutated 
winners

training 
dataset

validation 
dataset

B C D E F G

A A’ A’’ B C B’ C’

Figure 1: Evolution of SuSLik instances

To address this issue, we built an evolutionary
framework that improves SuSLik’s synthesis
strategy. Basically, this framework tries to
identify suitable search parameters for SuS-
Lik’s proof search strategy. These parameters
include the weights associated with each step
of search. Our artefact is publicly available
at GitHub [3].

In this framework, we firstly create a pair
of specification sets: one for training and
the other for validation. Secondly, we pro-
duce the initial population consisting of 40
instances of SuSLik by mutating the original search parameters. In each generation, we assign
the specifications in the training set to each SuSLik instance. Then, we count how many specifi-
cations each SuSLik instance manages to solve within 2.5 seconds. We take 20 best performing
instances and produce new mutants from them. Then, we pass these winners and their mutants
to the next generation and repeat this process 40 times. To accelerate evolution, we allow the
champion of each generation to produce two instances of mutants as shown in Figure 1.

We experimented our framework four times. Table 1a shows the results of training. For
example, the second row in Table 1a reads as follows: in the first experiment 32 specifications
fell into the set for training, and 18 specifications were left unsolved by the best SuSLik instance
in the zeroth generation. This number decreased to 16 and 15 for the 20th and 40th generation,
respectively.

In our experiments, we conducted cross-validation for each generation. Their results are
shown in Table 1b. Note that we used a fixed pair of training set and validation set throughout
the evolution of each experiment to maintain the distinction between the two sets. All these
four experiments showed that improvements from training sets translates to improvements on
validation sets despite the small size of dataset. That is, we found that

there are strategies that tend to perform better for unforeseen problems, and we
can find such strategies using genetic algorithms.

2



Genetic Algorithm for Program Syntehsis in SuSLik Nagashima

References

[1] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In
Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011, pages 317–330. ACM, 2011.

[2] Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey. Deductive
synthesis of programs with pointers: Techniques, challenges, opportunities - (invited paper). In
Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of
Lecture Notes in Computer Science, pages 110–134. Springer, 2021.

[3] Yutaka Nagashima. https://github.com/yutakang/suslik/tree/evolutionary, 2021.

[4] Nadia Polikarpova and Ilya Sergey. Structuring the synthesis of heap-manipulating programs. Proc.
ACM Program. Lang., 3(POPL):72:1–72:30, 2019.

3

https://github.com/yutakang/suslik/tree/evolutionary

	Deductive Program Synthesis
	Evolutionary Computation for Better Search Strategies

