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Introduction In satisfiability modulo theories (SMT), quantifiers are treated opaquely: they
are seen as sources of possible instantiations. A quantified sub-formula ∀~xφ is abstracted as a
Boolean variable Q and instantiations are registered in the form of implications Q⇒ φ[~x 7→ ~t ]
for some ground terms ~t. Consider the following toy formula:

f(3) < 0 ∧ ((∀xf(x) > 0) ∨ (∀xf(x) > x)),

where f : int→ int. To obtain a refutation, we abstract and instantiate as follows:

abstraction: Q1 ≡ (∀xf(x) > 0), Q2 ≡ (∀xf(x) > x)
abstracted formula: f(3) < 0 ∧ (Q1 ∨Q2)

instantiation 1: Q1 ⇒ f(3) > 0
instantiation 2: Q2 ⇒ f(3) > 3

Most approaches instantiate quantifiers gradually, meaning, the new instantiations are added
after testing that the old ones do not already yield a contradiction in the ground solver. In this
work, we propose to use machine learning to decide which quantifiers should be instantiated
during solving. Figure 1 schematically illustrates the considered setup.
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Figure 1: Schematic of the SMT solver with ML guidance for quantifier instantiation.

There are a number of methods for devising new instantiations [2, 3]. Here we consider a
simple setup where instantiation terms are taken from the set of terms present in the current
ground formula—this includes the instantiations already performed and therefore this set grows
throughout the life of the solver. Without theories, the set of candidate ground terms grows
towards the Herbrand universe. This approach is referred to as enumerative instantiation [8, 5].

In standard setting, the SMT solver would instantiate all quantifiers that are true in the
current ground model. Here, we propose to instantiate only a subset, based on a pre-trained
ML-predictor. Selecting the right quantifier for instantiation puts less burden on the ground
solver but also facilitates the search for the right ground terms to be used for instantiations.
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Approach Consider quantified sub-formulas Q1, . . . , Qn true in the current model of the
ground solver. Consider some pre-trained ML-predictor V from formulas to the interval [0, 1],
where V(Q) = 1 means that the predictor believes that Q is important for the solution of the
whole SMT problem. A straightforward approach would be to instantiate Q with the probability
V (Q). This brings about the risk of instantiating too seldom if the ML predictor has low overall
confidence. Therefore, we rescale to maxV(Qi), i.e., the quantifier argmaxiV(Qi) is instantiated
with probability 1. But even with this policy, we are running the risk that a bad judgment of
the ML prediction will cause some important quantifiers never to be instantiated. To that end,
with probability ε ∈ [0, 1] a quantifier is always instantiated. In essence, this corresponds to
the well-known ε-greedy policy [9] and a quantifier Q is instantiated with probability:

ε+ (1− ε) V(Q)

maxi V(Qi)
.

Implementation and experiments The approach was implemented in the SMT-solver
cvc5 [1] with LightGBM [6] as the ML-predictor. Currently, the ML-predictor only gets as
features the bag of words representation of the quantified sub-formula, i.e., ignoring the overall
context. For evaluation we use SMT-LIB problems from the UFLIA/sledgehammer category,
while filtering out problems solvable without instantiation. Looping-style evaluation is run
(similar to [4, 7, 10]). In the first iteration, an unguided SMT-solver is run on the benchmark
and data extracted from the solved problems is used to train the ML model. Then, the model
is used to guide the solver in the next iteration of solving the benchmark. The success rate is
recorded and examples extracted from the newly solved problems are added to the training set.
This solving-training procedure is repeated 6 times with time limit 60 s for the solver. Figure 2
shows results for ε ∈ {0, 0.1, 0.5} and a version with no ML-guidance.

Figure 2: Looping evaluation on UFLIA/sledgehammer dataset. Left: number of training
problems solved cumulatively. Right: number of testing problems solved in individual iterations.

Conclusions and future work The paper shows that that ML guidance can effectively
guide quantifier instantiation in SMT. The evaluation points to a significant impact of learning
on the number of solved instances but we only observe improvements on the training set,
not on testing. This suggests that there is some version of over-fitting, even though not in
the standard sense because the training examples constantly change. We plan to improve
featurization by including the context of quantifiers (looking at the whole SMT problem) and
using more advanced featurization approaches such as graph neural networks.
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