
Reinforcement Learning for Schedule Optimization∗

Nikolai Antonov13, Jan Hůla12, Mikoláš Janota1, and Přemysl Š̊ucha1
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Problem formulation and related work. In this paper we use machine learning to optimize
a specific problem in integer linear algebra, which is practically motivated as job scheduling.
Let us have a machine (system) capable of doing some work divided into a sequence of jobs.
The machine follows three basic assumptions. First, it can do only one job a time. Secondly, a
started job cannot be interrupted: a job must be completed before starting a next one. Third,
the machine cannot idle: having finished one job, it immediately moves onto the next one until
all the jobs assigned to the machine are finished. We are given a set of jobs N = {1, 2, ..., n}
with processing times pi and due dates di for all i ∈ N . We assume that pi and di are positive
integers and pi ≤ di for all i ∈ N . Additionally, each job has a weight (or cost), which is
a positive integer wi, i ∈ N representing how valuable a particular job is. Assume that all
the jobs are available form the very beginning (time moment 0) and executed one by one in
the order specified by a permutation P of N . Let CP

i denote the completion time of i-th job
executed according to permutation P and define a set S = {i ∈ N | CP

i ≤ di}. The goal is
to find a permutation P ∗ maximizing the weighted number of jobs that will be completed no
later than the specified due date, i.e. maximize f(P ) =

∑
i∈S wi. We formulate the problem in

satisfiability modulo theories (SMT). We want to find an integer vector

(s1, s2, ..., sn) ≥ 0

maximizing ∑
σ(CP

i , di)wi, where σ(x, y) = 1 if x ≤ y else 0

subject to
i < j =⇒ (si + pi ≤ sj) ∨ (sj + pj ≤ si), i ∈ N, j ∈ N

The formulation does not explicitly specify that there must not be idling time, because at the
post-processing stage any solution can be easily adjusted to eliminate any idling. In this work,
we use reinforcement learning (RL) to solve this maximization problem, without guaranteeing
optimality—approximate optima are also practically interesting. We remark that a decision
version of the problem is obtained by bounding the objective function by some integer K.

The problem is proven to be NP-hard [4]—Knapsack is a special case when all jobs have
the same due date. Due to its practical importance, the problem has been studied extensively
in scheduling and OR communities: Potts and Van Wassenhove [6] gave a branch and bound
algorithm for solving instances with up to 1,000 jobs; M’Hallah and Bulfin [5] propose an exact
algorithm capable of handling instances with up to 2,500 jobs; Baptiste et al. [1] developed
an algorithm solving up to 50000 jobs instances of particular type; Hejl et al. [3] investigated
strongly-correlated instances and achieved a progress of solving 5000 jobs within one hour.

To the best of our knowledge, the considered problem was not studied in the ML community.
However, number of combinatorial optimization problems tackled by reinforcement learning and
other ML approaches is growing every year; we refer the reader to a survey by Bengio et al. [2].
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Figure 1: Decision-making of the RL agent for job J

Approach. We solve the considered problem using deep reinforcement learning [8, 7]. A
sketch of the approach is provided in the Figure 1. Initially, all the jobs are sorted in ascending
order by due date. At each moment of time, the agent observes a set of jobs that have not
been completed yet and one of these jobs that the agent has to decide about (the unprocessed
job with the earliest due date). The featurization of the unprocessed jobs is based on the
distribution of their weights/proc. time/due date (represented as histograms). The agent has
two possible actions: (1) schedule the first unprocessed job immediately and therefore it will
be on time; (2) mark the job as tardy and move it to the end of schedule. One step of the
agent corresponds to a decision regarding one job from a given instance. During the training
phase, the agent receives a reward whenever the decision is right, i.e. if the job turned out to
be the same (on time or late) as the agent predicted it to be in the optimal permutation that
we have as a label. During the validation phase, the agent is only rewarded at the very end.
The reward is equal to the ratio of the cost obtained by following the policy to the cost of the
optimal solution.

Evaluation and conclusions. To make a fair comparison with actual results, we generate
data according to the algorithm presented in [1] and [3]. Weights and durations are random in-
tegers from [1; 100] and every due date is random integer from [0.3S; 0.7S], where S =

∑
i∈N pi.

We compare to greedy heuristics MAX COST, MAX COST/DUR and MAX COST/DUE,
which process the jobs in ascending order based on wi, ratios

wi

pi
, and wi

di
, respectively. Terms

µ(n) and σ(n) stand for mean and standard deviation of optimality gap, obtained on the in-
stances with n jobs. An optimality gap is defined as v∗−v

v∗ , where v∗ is the optimal value of the
instance and v is the cost obtained by following the policy. The results show that our approach
achieves much lower optimality gap than any of the greedy-heuristic approaches. This indicates
that reinforcement learning is a viable approach to optimization of the linear integer algebra
problems studied in this paper. We believe that this work would inspire further research on the
use of reinforcement learning on more general problems or on probabilistic decision procedures.

µ(100) σ(100) µ(250) σ(250)

MAX COST 0.14 0.03 0.14 0.02

MAX COST/DUR 0.09 0.02 0.09 0.01

MAX COST/DUE 0.09 0.02 0.09 0.01

DRL model 0.065 0.027 0.015 0.01

µ(500) σ(500) µ(1000) σ(1000)

MAX COST 0.14 0.01 0.14 0.01

MAX COST/DUR 0.08 0.01 0.08 0.01

MAX COST/DUE 0.09 0.01 0.09 0.01

DRL model 0.017 0.01 0.009 0.006
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