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The Naproche [1] (Natural proof checking) theorem prover demonstrates that it is possible
to write non-trivial fully natural machine-verified proofs in a controlled natural language for
mathematics: every statement is a statement of the common language of mathematics, and the
argument uses familiar declarative proof structures. Naproche formalizations can be written
in a LATEX format which allows immediate mathematical typesetting. The system is available
within the Isabelle prover platform [3], including some example formalizations which partly
resemble undergraduate mathematical material.

Natural mathematical texts assume that the reader could in principle fill in lots of technical
detail and implicit proof steps. Likewise Naproche’s aspiration to process similar texts requires
a high degree of “machine intelligence” which is achieved through careful organization of proof
tasks which are given to strong automated provers. Modeling the softly typed natural language
is carried out with first-order defined types so that subtypes and partial functions with guards
on definedness are available. Unfortunately type-checking of complex terms presently spawns a
number of general first-order proof tasks which in general can only be discharged at run-time,
i.e., during the proof process. “Human-sized” proof steps also stretch the abilities of ATPs.
At the moment basically all previous statements are made into premisses of proof tasks. Often
reformulations of proofs are necessary to help the ATP whilst keeping the naturalness and
readability of a text.

As improvements to the Naproche system are allowing longer and interlinked formalizations,
the above-mentioned difficulties are mounting up. Naproche’s predecessor SAD was only able to
process and check mathematical “miniatures” which each came along with purpose-built onto-
logical preliminaries. Small text sizes resulted in small proof tasks which did not overwhelm the
ATPs. With the incorporation of SAD into Naproche we have gone from miniatures to chapter
sized texts and recently to small libraries to be re-used in other formalizations. Obviously this
led to a steep increase in the number of possible premisses which resulted in several types of
prover problems:

Check times. Many Naproche formalizations require several minutes checking time on
standard laptops but some texts need even some hours. Usually more time is spent on type
checking (which is called ontological checking) than on the logical checking of proof steps. These
problems got worse after replacing a crude and potentially contradictory underlying set theory
by a Kelley–Morse-style ontology which distinguishes between sets and classes. This, however,
leads to many additional proof in ontological checking: when unions A∪B have been originally
defined for classes, then the union a∪ b of two sets requires proofs that a and b are also classes.

Erratic prover behaviour. Extensive texts usually contain many function symbols which an
ATP can use for unification-based proof searches. Automatic proof steps can be confused by
adding symbols which in principle are not connected with the actual prover task.

Ontological checking. Although type-checking should normally be a mild proving task, the
use of general purpose ATPs in a large number of checks increases the probability that an ATP
will get on a wrong track and miss obvious arguments. Sometimes we could only get ontological
correctness by putting some type information into a statement immediately before the statement
with the problematic term - something one would hardly find in natural mathematical texts.

Stability of formalizations. We use E [7, 8] as the main external prover. Many Naproche
formalizations are written against a specific version of E, with proof steps chosen accordingly.
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Replacing that version of E with a different version (or a different ATP entirely) typically results
in some proof tasks failing, even when the different version performs better overall. This results
in a significant maintenance burden, particularly for larger formalizations.

In our talk we shall report on ongoing work aiming to avoid or mitigate these scaling issues.

1. Tracing prover behaviour: when do provers latch on to obviously hopeless search path?
What can we learn from concrete examples?

2. Experimenting with multiple ATPs: where lie the relative strengths of individual ATPs
in the context of Naproche? For example we have seen proof tasks where the addition
of a single irrelevant hypothesis makes the task impossible for some provers, while others
can solve the problem within roughly one second. So far we have used E, iProver [4, 2],
SPASS [9, 11], and Vampire [10, 5] for our experiments.

3. Adding premise selection (e.g. starting with a MePo-like [6] filter) to Naproche.

4. Simplifying or reducing ontological checking. Most ontological checks should not amount
to full first-order proof tasks.

5. Experiments with different ontologies (Kelley–Morse vs. Zermelo–Fraenkel) show that
there are trade-offs between richer ontologies (adding classes and/or urelements) on the
one hand and burdening users with proof obligations as well as cluttering exported proof
tasks with type guards on the other.

6. Reducing checking times through improvements to the architecture of Naproche: increas-
ing parallelism, caching, and more.

We shall also talk more generally about the potential of the Naproche approach with respect
to article-sized and textbook-sized formalizations.
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