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We present the foundations and initial implementation of a new interactive theorem prover, named
LISA. In a slight contrast to most popular type-theoretic frameworks, and much like Mizar [9], LISA
aims to use classical mainstream foundations of mathematics, taking a hint, among others from the talk of
John Harrison in this very venue in 2018 [12]. LISA uses (single-sorted) first order logic (with schematic
variables) as the syntactic framework and set theory axiom schemas as the semantic framework. On top of
these foundations we can construct numbers and other mathematical theories and models of computation
without introducing new axioms. As the target use of LISA we envision mathematical statements as
well as formal proofs of computer programs and systems, possibly with probabilistic and distributed
behavior. For automation in LISA we expect to employ newly developed algorithms for equivalence
checking of formulas and proofs [4], existing high-performance superposition-based theorem provers
such as Vampire [7], SPASS [13], E [10] and Zipperposition, as well as SMT solvers such as Z3 [8],
CVC5 [?], and veriT [11], and OpenSMT [2]. An important aim of LISA is interoperability with other
proof assistants. We hope that the design of LISA with small, fresh code base, simple foundation and
explicit proof objects will encourage building bridges with other tools. We also expect that the system
will serve as a good vehicle to explore machine-learning guided superposition proof search, with learned
heuristics complementing hand-tuned ones. We also plan to explore high-level translation of proofs from
other systems into LISA, inspired by the success of deep neural networks in natural language translation.

Development LISA is separated into a trusted logical core called the kernel that we keep as small as
possible, and a front part adding arbitrarily complex or powerful layers of abstractions and features for
the user, but which need not be trusted. Our language of choice for LISA is Scala (version 3). On one
hand, Scala offers very powerful syntax and features, such as dependent types, string interpolation and
implicits, which allows (for example) to use Scala compiler to check that terms are well formed, or to
define very nice syntax for proofs or objects we want to manipulate. On the other hand, the kernel is
developed only with a restricted subset of the Scala language, paving the door for future verification of
the kernel using program verification tools such as Stainless [5].

We strived to keep the core of LISA as close as possible to well-known and uncontroversial math-
ematical theory, but nonetheless includes some improvements, in particular relating to space and time
complexity. Hence, our base language is first order logic, to which we add schematic functions and
predicates. Those schematic symbols give some flavour of second-order logic, the possibility to define a
single syntactic object representing an axiom schema or theorem schema. Our experience already sug-
gests that schematic variables make many further developpements and proofs simpler, but do not increase
the proof strength of FOL.

LISA kernel’s proof checker is based on an implementation of Gentzen’s sequent calculus, with the
addition of some deduced proof steps such as the substitution of equals for equals and the possibility to
enclose subproofs to reduce the length of proofs.

Proofs in LISA are represented as linearized directed acyclic graphs (i.e. lists of proof steps), which
can verified by the proof checker. Proofs can either exists in isolation, or be part of theories. Theories
in LISA form the LCF part of the kernel. They use the proof checker to verify theorems, and to then
accept such theorems as assumptions of future proofs without needing rechecking. Theories also enable
introduction of (set theoretic) axioms and definitional extensions of new symbols.
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Equivalence Checker A unique feature of our kernel is the inclusion of a quasilinear-time sufficient-
equivalence checker for FOL formulas that takes into account associativity, commutativity, and other
laws and has a clear algebraic completeness characterization [4]. The aim of implementing such equiv-
alence checker in the kernel is to shorten the proofs (by a constant factor), making the system more
efficient to use by humans and tactics alike.

The equivalence checker takes into account properties of FOL such as alpha equivalence and symme-
try of equality, but most of its complexity take place at the level of propositional logic. Since equivalence
of propositional formulas is coNP complete, we can only aim for an approximation of it. Nonetheless,
it is important to note that our algorithm is not an arbitrary heuristic; it is a complete decision proce-
dure for a well-defined subalgebra of boolean algebra called orthocomplemented bisemilattice, which
is essentially Boolean algebra without the distributivity law. We expect that this aspect helps make the
equivalence checker predictable. Moreover, it runs in quasilinear time, meaning it can replace syntactic
equality checking everywhere in the proof checking procedure with only a logarithmic cost. Equiva-
lence checking algorithm is implemented using a combination of techniques for tree isomorphism with
memoization and term rewriting. Our anecodotal experience suggests that manual construction of proofs
greatly benefited from the implementation of this formula equivalence.

High Level Proofs We also succesfully implemented a semi-interactive interface to the logical kernel
allowing forward and backward reasoning, creation of new tactics and combination of existing ones, high
syntax insurance through Scala type checking, higher order matching and more. Works is still ongoing,
but it demonstrates the feasibility of designing a powerfull interface for the system.

Why set theory? Even though set theory is by far the most studied, accepted and well-known foun-
dation of mathematics, this choice is uncommon among interactive theorem provers and the Computer
Science community in general. Indeed, most modern ITPs such as Coq [1], Lean [3], Isabelle [14] or
the HOL-family [6] are based either on some form of Type Theory or on Higher Order Logic. While
those theory have the advantage to look closer from the start to the mathematical formalism, we believe
there are several reasons to prefer set theory. It may need higher upfront work, but we strongly believe
that through the use of powerful tactics and a soft type system (where types are represented by set or
class membership with meta-information for polymorphism) apposed on top of set theory, arbitrarily
familiarity in the writing of proofs can be achieved with set theory, with ultimately greater flexibility.
More arguments in favour of set theoretic foundations have been proposed by John Harrison [12].

Verification of Programs One of LISA’s goals is to contribute to verificaton of reliability of our com-
puting infrastructure. Medium term, we aim for two different paths for using LISA inside program
verifiers, such as Stainless, in which it can be cumbersome to reason about quantified propositions. On
the one hand, we hope to develop semantics of transition systems and programming languages and use
such semantics to provide high-confidence proofs about behavior of programs and embedded systems.

Future work and conclusion LISA is in early stage of development, which has focused on proof
checking for FOL with equality and schematic variables, as well as the support for theories and LCF-
style tracking of theoremhood. Most of the development dependent on set theoretic axiom schemas
remains in the future. Medium term goals include further development of abstraction layers and proof
tactics, development of a core library of results, implementation of the program verification side of LISA
and more exploratory work such as the tradeoff between , or the extension of our equivalence checker to
orthocomplemented lattices. We also had some exploratory work on the interoperability of proofs, and
we plan to continue to work on that aspect.
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