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1 Introduction

Saturation-based automated theorem provers (ATPs) that use the given clause algorithm [1]
maintain two sets of clauses during the proof search: processed and unprocessed. In each
iteration of the saturation loop, the prover selects a clause, called the given clause by convention,
from the unprocessed set. All possible inferences are then made between the given clause and
the processed clauses. The newly inferred clauses are added to the unprocessed set, while
the given clause is moved from the unprocessed set to the processed set. When the proof
search successfully concludes (by inferring the empty clause, a trivial contradiction), a subset
of processed clauses constitutes the proof.

The basic clause selection heuristics choose the clause that is the oldest according to the
time it was inferred, or the smallest in the symbol count, that is, the number of symbol occur-
rences [11]. The symbol count heuristic can be generalized by assigning each symbol a weight
(a positive real number); the clause weight is then calculated by summing the weights of the
symbol occurrences. In addition to that, clauses can be penalized, for example, for each positive
literal, maximal literal, or unorientable equation [10].

The goal of this project is to improve the standard weight-based clause selection heuristic
by machine learning from proof searches. Specifically, our aim is to find problem-specific values
for the coefficients of the clause weight function (that is, the weights of symbols, variables,
maximal literals, unorientable equations, etc.). These parameter values are to be output from
a neural network (NN) trained on successful proof searches.

In section 2 we describe in detail our proposed solution in its basic form – a system that
automatically configures the parameters of the clause weight function in a problem-specific
fashion. In section 3 we outline possible generalizations and modifications.

2 GNN-based clause selection

Prediction When a new problem is to be solved, the problem is processed with a graph
neural network (GNN) [13, 8, 4, 9]. The GNN produces a weight wf for each symbol f and a
common weight wX for all variables. The weights are then used to instantiate a weight-based
clause selection heuristic: The weight of a clause is computed as the sum of the weights of all
the symbol and variable occurrences in the clause.

Note that our GNN only needs to be evaluated once at the beginning of the proof search:
Once the symbol and variable weights are calculated, they can be used throughout the proof
search without any additional input from the GNN. This can be interpreted as a conservative
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modification of the standard clause selection heuristic: We introduce neural guidance into the
proof search without increasing the cost of computing the weight of a newly inferred clause. This
contrasts with neural proof guidance systems that process each clause considered for selection
with a NN, such as ENIGMA Anonymous [5] or the prototype extension of E by Loos et al. [7].

Training The GNN is trained on successful proof searches. Similarly to ENIGMA [5], our
GNN is trained so that the clause selection heuristic favors clauses that have been observed to
contribute to a proof. Using a GNN that does not have access to symbol names, we train a
signature-agnostic system.

Each training example consists of an input problem, a proof clause c+, and a non-proof
clause c−. The loss function ℓ is defined so that it is monotone with respect to the weight of
the proof clause w(c+) and anti-monotone with respect to the weight of the non-proof clause
w(c−). Additional penalty terms, scaled by hyperparameters λf and λX , ensure that the symbol
weights wfi and the variable weight wX do not drift far from the standard value 1. The loss of
the proof clause c+ and the non-proof clause c− in a problem with symbols f1, . . . , fn is:

ℓ(c+, c−) = − log sigmoid(w(c−)− w(c+)) + λf
1

n

n∑
i=1

(logwfi)
2 + λX(logwX)2 (1)

This loss design is inspired by the approach that we successfully applied to symbol precedence
recommendation [2].

Training examples will be collected by running the target ATP Vampire [6] on problems
randomly sampled from the TPTP problem library [12].

3 Possible modifications

Additional input features The clause weight function may include additional clause fea-
tures available in the prover, namely clause derivation depth and size. These clause features
may be multiplied by coefficients predicted by the GNN to make the influence of the features
trainable. In a similar fashion, the weights of terms, atoms, and literals may be augmented by
term-ordering-aware features [11], namely literal maximality in the clause, term maximality in
an equation, and orientability of an equation.

Binary cross-entropy loss A straightforward alternative to the loss function defined above
(1) is provided by training a binary clause classifier that predicts whether an input clause is
non-proof. If we allow the symbol and variable weights to span all real numbers, we can train
the NN using the standard binary cross-entropy loss, which allows extracting a prediction of
probability of the input clause classifying as non-proof. Ranking the clauses by this probability
prioritizes the inference of clauses that are likely to contribute to the proof. Although allowing
negative term weights forfeits fairness of the clause selection, this can be salvaged (as is anyway
done in the typical clause selection setup) by alternating weight-based and age-based clause
section under some ratio.

Recursive neural network Without increasing the asymptotic computational cost of the
evaluation of the clause weight, we can train a recursive neural network (RNN) for the clause
syntax directed acyclic graph (dag) [3]. Depending on the complexity of the RNN, this can
significantly increase the computational cost of evaluating the weight of a clause. The RNN
may use a GNN to calculate the initial embeddings of the symbols and variables.
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