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Lash [BK22] is an automated theorem prover for higher-order logic. Lash is a fork of
the theorem prover Satallax [Bro12; FB16]. Lash replaces Satallax’s Ocaml representation of
terms with an efficient representation of normal terms (with unique integer ids) in C. The
representation in C also stores useful information such as which de Bruijn indices are free in
the term. Knowing the free de Bruijn indices of terms makes recognizing potential η-redexes
possible without traversing the λ-abstraction. Likewise it is possible to determine when shifting
and substitution of de Bruijn indices would not affect a term, avoiding the need to traverse the
term. Computations such as substitutions and shifting de Bruijn indices are cached to prevent
recomputation.

In addition to the low-level C term reimplementation, we have also provided a number
of other low-level functionalities replacing the slower parts of the Ocaml code. This includes
low-level priority queues, as well as C code used to associate the integers representing normal
propositions with integers that are used to communicate with MiniSat.

As with Satallax, the nature of Lash’s search is highly dependent on the settings of boolean
and integer flags. A mode (also called a strategy) is a collection of flag settings. A schedule is
a sequence of modes, along with a timeout. A few of the important flags include:

• Initial Subterms As Instantiations is a boolean flag. If set to true, Lash uses closed
subterms of the initial problem as instantiations.

• Eagerly Process Instantiations is a boolean flag. If set to true, new instantiations
are processed immediately instead of being put onto the priority queue.

• Split Global Disjunctions is a boolean flag. If set to true, Lash tries to split the
problem into several subproblems to be proven independently before beginning the search.

• Minisat Search Period is an integer flag that controls how often Minisat is asked to
search for a model of the current set of propositional clauses. Sometimes this is set to
a low number, e.g., 10, so that Minisat checks for unsatisfiability after every tenth step.
Often it is useful to set the flag to a very high number, e.g., a billion, so that Lash
will effectively not ask Minisat to check for unsatisfiability, unless all other options are
exhausted. (In many problems Minisat determines unsatisfiability via unit propagation
without decisions.)

• Enum Start is an integer flag that determines how long to delay beginning enumeration
of instantiations for quantifiers at function types. If a problem has a higher-order quan-
tifier that is irrelevant to the problem, then a high value is helpful (since no higher-order
instantiation is needed). If the problem requires instantiating a higher-order quantifier,
then a lower value is more likely to lead to success.

• Axiom Delay is an integer flag that (if nonzero) nudges Lash to work on the negated
conjecture before working on the axioms, with larger integers corresponding to longer
delays.
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Following Satallax, Lash reads a problem and determines if it exceeds a certain size thresh-
old, classifying problems as “small” or “large.” For large problems an implementation of
SInE [HV11] reduces the size of the problem and then searches using a schedule appropri-
ate for large problems. For small problems a search proceeds using a schedule appropriate for
small problems. Which modes and schedules are appropriate for which kinds of problems is
determined experimentally.

Starting with several manually designed strategies (i.e., modes) and we use the strategy
invention systemGrackle1 to invent more strategies targeted to randomly selected 1800 TPTP
THF problems. Grackle is a generalization of strategy invention system BliStr [Urb13].
Both systems are based an evolutionary algorithm, where strategies are considered “animals”
and problems to be solved their “food”. Only animals that consume enough food, that is,
solve enough problems, survive to the next generation and are given a chance to conceive an
offspring. This algorithm favors animals that consume food not consumed by others. This leads
to diversity and complementarity of invented strategies.

While BliStr is a strategy invention system for E Prover, Grackle can be instantiated
to invent strategies for any solver. A requisite of this instantiation is a parametrization of the
solver configuration space, in our case, the collection of Lash mode flags. We start by extracting
flag names and possible option values from the collection of manually designed modes. This
gives us 130 flag names. Out of them, 43 correspond to boolean options. The rest are integer
options, with domains ranging in size from 2 to 26. Altogether, the space contains around 1060

possible configurations.
Once the configurations space is parametrized, we can launch Grackle with 10 initial

configurations, selected from the manually designed strategies as the most complementary and
strongest ones. During the strategy invention, configurations are evaluated with a short runtime
limit of 1 second. The best of the initial strategies solves 285 problems (out of 1800 TPTP
problems) in 1 second. Together, the 10 initial strategies solve 358 problems.

We limitGrackle runs to 24 hours to be able to evaluate several strategy invention options.
We try different settings for maximal strategy generation size, and several variations of strategy
specialization used to produce offspring. Together we run around 14 Grackle runs, each
running on 8 CPU cores. All the runs produce more than 3000 different modes, the best of
them solves 355 problems in 1 second. The greedy collection of 10 best new modes solves
together 449 problems, and the total coverage of all the modes is 489.

We construct a Lash schedule by evaluating best 110 strategies on the training problems
in 30 seconds. From this evaluation, we construct a greedy cover of 10 best strategies. This
greedy cover gives us an order in which to run the modes, provided the overall time limit is
evenly distributed among the modes. Additionally, we construct a schedule with 20 modes,
extending the first 10 with another greedy cover constructed without the previously selected
modes. Furthermore, we can also split the results of the evaluation into results on “small” and
“large” problems, and we can construct two different schedules for them.

We are investigating the possible ways how machine learning can be included in Lash.
In particular, this could involve the extension of the shared C representation by precomputing
various features useful for prioritizing the available actions [FB16]. Other ways to apply machine
learning include the selection or even generation of interesting instances for a given problem,
as well as machine-learning guided interaction with the SAT-solver.
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1https://github.com/ai4reason/grackle
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