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Abstract

We propose to build a reinforcement learning prover of independent components: a
deductive system (an environment), the proof state representation (how an agent sees
the environment), and an agent training algorithm. To that purpose, we contribute an
additional Vampire-based environment to gym-saturation package of OpenAI Gym envi-
ronments for saturation provers. We demonstrate a prototype of using gym-saturation

together with a popular reinforcement learning framework (Ray RLlib). Finally, we dis-
cuss our plans for completing this work in progress to a competitive automated theorem
prover.

1 Introduction and related work

Reinforcement learning (RL) is applied widely in the automated reasoning domain. There
are RL-related (including iterating supervised learning algorithms without applying recent RL
advances) projects for interactive theorem provers (ITPs) (e.g. HOList [2] for HOL Light [8],
ASTactic [33] for Coq [31], or TacticZero [32] for HOL4 [27]) as well as for automated theorem
provers (ATPs) (e.g. Deepire [28] for Vampire [16], ENIGMA [25] for E [12], or rlCoP [13] for
leanCoP [18]). Despite the variety of solutions and ideas, we are not aware of cases of significant
code reuse between such projects.

We envision a prover capable of learning from its experience and composed of pluggable
building blocks. We hope that such architecture could promote faster experimentation and
easier flow of ideas between different projects for everyone’s progress. For an RL-based prover,
we identify at least three types of modules. They are a deductive system (an environment), a
proof state representation (how an agent sees it), and an agent training algorithm.

When choosing whether to learn to guide an ITP or an ATP, we prefer the latter since ATPs
can be relatively easy compared as black boxes [30] in contrast to RL guided ITPs, which often
come with their distinctive benchmarks.

Among ATPs, one can consider saturation provers less suitable for the RL (e.g., see design
considerations from [22]), but several existing projects (like ENIGMA, Deepire or TRAIL [5])
show encouraging results. Keeping that in mind, we decided to concentrate on guiding clause
selection in the saturation algorithm by RL.

Inspired by HOList, CoqGym (from ASTactic) and lean-gym [20], we have created
gym-saturation [26] — an OpenAI Gym [4] environment for training RL agents to prove
theorems in clausal normal form (CNF) of the Thousands of Problems for Theorem Provers
(TPTP) library [29] language.
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2 Recent work in progress

Contemporary RL training algorithms are notorious for the number of details that can differ
from one implementation to another [9]. To eliminate the risk of abandoning an RL algorithm
as unsuitable for guiding an ATP only because of flaws in our implementation of it, we plan
to rely on existing RL frameworks containing tested implementations of well-known baselines.
As a starting point, we have chosen Ray RLlib [17] as a library claiming both deep learning
(DL) framework independence and extendability. Similar solutions like Tensorflow Agents [7]
or Catalyst.RL [15] tend to support only one DL framework, which we wanted to avoid for
greater generality.

In contrast to CoqGym and others, gym-saturation is not only a ‘gym’ in some general
sense, but it implements the standard OpenAI Gym API. It makes it easier to integrate with
libraries like Ray RLlib. We contribute1 a prototype of such integration. Even together with
some domain related patches, the prototype remains a lightweight collection of wrappers around
standard RLlib classes, taking only around 300 lines of Python code.

Since we postulated interchangeability of modules, we added a Vampire-based environment
to gym-saturation (see the project page2 for more details) in addition to the already existing
näıve implementation of a saturation loop. Despite a different backend, one can plug a new
environment into the prover prototype without additional edits of RL related code.

Similar systems for connection tableaux There exists a FLoP (Finding Longer Proofs)
project [34] which implements a ProofEnv OpenAI Gym environment for a connection tableaux
calculus, which can guide two different provers (leanCoP and its OCaml reimplementation
fCoP [14]). FLoP shares many architectural features with our work, and we plan to test its
approaches in saturation provers setting.

3 Prototype implementation details

Since this research is still in an early stage, we don’t report any conclusive results of its
performance, only describing the architecture. A prototype prover has two main parts:
gym-saturation as an environment and a patched DQN [10] implementation from Ray RLlib

training an agent. An episode starts with the environment reset. On environment reset, a
random TPTP problem from a training subset is loaded, transformed to the CNF, and becomes
a proof state. After an agent makes an action (selects a clause), the episode can stop for three
reasons: a given clause is empty (refutation proof found, the reward is 1.0; in other cases, it’s
0.0), we reach the step limit (a soft timeout), we reach the maximal number of clauses in the
proof state (a soft memory limit). Only episodes with a positive final reward go to the memory
buffer. Before storing in the buffer, the reward is spread evenly between the clauses from the
proof (others remain zero). A memory buffer can contain the same proof for the same problem
twice or different proofs (maybe of different lengths) for one problem. A training batch can
contain steps from different episodes (and thus different initial environment states). We sample
the memory buffer with higher weights for more recent episodes.

1https://github.com/inpefess/basic-rl-prover
2https://pypi.org/project/gym-saturation/
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4 Future plans and discussion

In the prototype, we represent each clause in a proof state only by its size and order number,
applying a logistic regression as a Q-value function. We will need an elaborate feature extraction
procedure to complete this oversimplified model to a competitive ATP. We plan to use graph
neural networks similar to those used for lazyCoP [23] and then compare and combine them with
the graph representation of clause lineage pioneered by Deepire. We also plan to test training
algorithm interchangeability by using IMPALA [6] and Ape-X [11] in addition to DQN.

A finished project will have to address many different problems. Here we list several obvious
ones.

Delayed reward One of the well-known peculiarities of an ATP is the fact that a reward
can be assigned only after proof is found, which can take a large number of steps in an RL
episode. To make an agent learn to discern good steps, one has to spread the final reward
to all the steps in a finished trajectory. A typical solution is to post-process a trajectory by
assigning positive advantage values only to the steps encountered in a proof, and negative (or
zero) values to all the rest. Here one can argue in favour of both higher values for longer proofs
(since the ability to produce longer proofs is desirable) and higher values for shorter ones (since
more concise proofs for simpler problems are preferable to verbose ones which in turn could
help to find longer proofs otherwise unreachable because of time and memory constraints). A
contrarian approach is to assign positive advantage values for all the steps in a trajectory on
which proof was found, and non-positive to all the steps from trajectories finished because of
the resource limitations. Such an approach works well, for example, in the Atari Pong game,
where it’s practically impossible to judge which action led to a goal.

Sparse positive reward Another well-known problem of applying RL to ATPs is related
to the fact that even sub-human performance still seems out of reach. The majority of proof
attempts finish without proof found. Discarding failed episodes seems too wasteful, although
obvious as a first attempt. An opposite solution (assigning non-positive advantage values to all
failed episodes) makes the training dataset too imbalanced. One possible solution to this is to
use replay buffers and sample from them balanced train batches. This explains why we decided
not to neglect DQN despite its known limitations when compared to on-policy algorithms like
PPO [24].

Multiple proofs Many problems have multiple possible proofs, equivalent in some sense or
not. An agent will have to decide which proofs are preferable to replicate. Again, replay buffers
can be used for that. Ranking proofs can be based on their length or other important properties
(reuse of previously proved lemmata, using only a selected subset of deduction rules or tactics
etc)

High environment’s inhomogeneity Some problems are inherently harder than others
and can belong to areas of mathematics not connected in a given formalization. Curriculum
learning [3] or at least limiting the training scope to a reasonable subset of the TPTP library
will be needed.

State representation Usually, contemporary RL algorithms expect the observed state to
have a form of a vector. Representing logic formulae as such is an active domain of research.
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We plan to try both logic-specific approaches like [21] and general abstract syntax tree encoding
models like code2vec [1] or ast2vec [19].
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