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Abstract

Conjecturing is an important activity in mathematics. In this paper, we look at the
why and the how of using machine learning to generate mathematical conjectures. We
argue that (1) conjecturing is beneficial, both practically and theoretically; (2) conjecture
learning should make use of available premises and goals in theorems. We also deliver some
design considerations for building an automated conjecturer.

1 Conjecturing as an essential mathematical activity
Consider lemma construction in theorem proving: in the course of proving a theorem, one
might realise that a particular conjecture, if true, makes it easier to prove the original theorem.
Once the conjecture is proved, it becomes a lemma. A well-known example of this is the
proof of the Taniyama–Shimura–Weil conjecture, which implied Fermat’s last theorem [Wil95].
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Figure 1: Theorem proving as search. The cut
transforms the original search problem into two
sub-problems by creating intermediate goal A.

Mathematical discovery is interleaved with
finding interesting conjectures, and proving,
refuting, or revising them [Lak15].

From a computational perspective, formal
theorem proving can be viewed as a search
problem of finding the goal Λ given the
premise Γ, as illustrated in Figure 1. A con-
jecture is then analogous to an intermediate
goal (a “cut”). Cuts reduce the search space
size exponentially w.r.t. their depth and
therefore simplify the search [Boo84, CS97].

Conjecture/lemma construction has received
relatively little attention from the AI com-
munity, considering its essential role in math-
ematics (see Appendix for a review). This is

partially due to the difficulty of conjuring them: the space of possible conjectures is infinite.
If we limit their size, the space is still combinatorially large and a universal heuristic for good
conjectures is hard to find. Language models [BHA+21] sample from combinatorial spaces and
have shown promising reasoning capabilities like solving maths competition problems [PHZ+22].
They can be easily configured to learn a general heuristic from human data. They are also not
restricted to generating conjectures syntactically close to the premises or the goals. Thus, they
complement symbolic reasoners, and are an obvious candidate for the task of conjecturing.

2 A quantitative metric for conjecturers
Before embarking on the specifics of a conjecturer, a metric for measuring the quality of con-
jectures is needed. We can examine conjectures qualitatively but that can be costly, hence not
suited to large-scale experiments. For a quantitative metric, we should consider that ineffective
conjectures can be true but not easily provable, untrue but not easily refutable, or trivially true
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and useless for our goal. Meanwhile, effective conjectures usually unlock multiple theorems.
In summary, the metric should prefer conjectures that are more provable, useful, and general.
[CBW00] also used these criteria to measure how interesting mathematical discoveries are.

Suppose we have a conjecturer C and a base prover B (which could take the form of Sledgeham-
mer [PB10] or a learning-assisted prover like LISA [JLHW21]). We can use C to propose new
subgoals, and B to close them. The performance of conjecturers is measured by the proportion
of theorems proven this way, subtracting the proportion of theorems proven with B alone. We
can calculate a vector of this value indexed by the choice of B. The vector is then a quantitative
measure of the conjecturer’s performance.

In this paper we argue that given the proposed metric, conjecture learning should make
use of available premises and goals of theorems. Premises constrain the variable space
in ways that are of interest for mathematics (e.g., the premise p is prime limits us to a small
but interesting set of natural numbers). Focusing on these special variable spaces, one is more
likely to make conjectures of relevance to human mathematics. This can increase the generality
of conjectures: conjectures syntactically or semantically related to goals have a better chance
of helping to prove them, instead of being trivially true (e.g., 0 = 0). Conditioning on goals can
improve the utility of conjectures. In the next section we detail some design considerations.

3 Building an automated conjecturer

The data and the environment Plenty of mathematical corpora and interactive environ-
ments are available: lean-gym [PHZ+22] for Lean, PISA [JLHW21] for Isabelle, coq-gym [YD19]
for Coq, mlCoP [KUMO18] for Mizar, etc. Inside these proof corpora there are examples of
conjecturing (Isabelle and Mizar have more due to their declarative proof style). Behaviour
cloning can be deployed on these human conjecturing examples to bootstrap the conjecturer.
For each datapoint, we should have the input-output pair to be in the following format: (input)
the premises of the current problem; the goals of the current problem; the proof so far; (output)
the conjecture written by the human.

The training loop Behaviour cloning alone does not guarantee a hugely useful conjec-
turer [LYWP21]. Since the conjecturer is bootstrapped from human conjecture examples, it
is not aware of the ability of the base prover B and might propose conjectures that are too
hard for it (we presume that the base prover B is weaker than a human). To deal with this
problem, we should adapt our system to come up with conjectures that are both useful and
can be proven by B. For a set of problems, run the following procedure until convergence: use
C and B to prove them; for failed proofs, filter out refutable conjectures with counter-example
finding tools like quickcheck and nitpick (filtering out refutable conjectures with Isabelle
tools was experimented by [NP18]); re-run C to refine the goals until they are either proved by
B or a recursion depth limit is reached; collect all successful proofs as the gold-standard data;
fine-tune both the conjecturer and the base prover on the gold-standard data. This procedure
ensures that the conjecturer is not over-ambitious by only including provable conjectures in
the gold-standard data. As the base prover improves via expert iteration [PHZ+22], we should
expect the theorems proven and the conjectures created to become more and more advanced.

The network architecture We want to leverage the recent advances in learning-assisted
theorem proving. As language model (LM)-based systems have demonstrated their potentials on
multiple theorem provers [PS20, PHZ+22, JLHW21], textual information as input is preferred
for generality. It is clear that the conjecturer C and the base prover B may share many common
capabilities, therefore a network architecture that reflects this can be advantageous.
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Appendix: a review of mathematical conjecturers
In a 1960 piece, Wang pointed out that making interesting conjectures is less easily mechanisable
than formalising proofs [Wan60]. Indeed, compared with the research on automated theorem
proving, conjecturing has received much less attention. Here we look at some prior works on
mechanising mathematical conjecturing, including both symbolic and learning-based methods.

[Len76, DL82] described the AM program, which can reinvent important concepts in set
theory and number theory, given basic facts such as sets and bags. AM is able to conjec-
ture generalisations of existing concepts, among the discovery of other concepts, based on 242
heuristics. [Eps87, Eps88] detailed the GT program , which does concept forming, conjecture
making, and theorem proving in graph theory. Graphs are very carefully represented such that
efficient automation of these activities can be done. The Graffiti program [Faj88] maked
numerical conjecutres on graph theory. Whenever a conjecture is made, the program tries to
refute them using a database of graphs. Those that were not refuted were left as the final
conjectures. Bagai et. al’s system [BSŻC93] made and proved conjectures in plane geometry
of the form that certain diagrams cannot be constructed. The HR program [CBW99] applied
to many finite algebras, as well as number theory and graph theory. HR used seven production
rules to find new concepts from old ones.

One common feature of these programs is that their domains of applications are relatively nar-
row. This is due to that representations of mathematical concepts are very different across
different domains. It is thus difficult to design a symbolic algorithm to find new concepts that
have a wide range of application areas. The Ramanujan machine [RGM+21] conjectures
polynomial continued fractions that equate to fundamental constants, and Davies et. al’s
system [DVB+21] hints mathematicians about important relations in knot theory and repre-
sentation theory. Although using learning, their representations are also very hard to extend.

Works that relate the most to our paper are PGT [NP18], proof planners [Bun88] and crit-
ics [IB96]. PGT [NP18] generates conjectures by mutating the goals and uses multiple filters to
make sure that they were useful and not easily refutable. This approach requires the conjecture
to lead directly to the goal (the gap can be closed by fastforce). Proof planners [Bun88] specify
the high-level structure of a proof and proof critics [IB96] try to come up with useful conjectures
from failed proofs. Both utilise the proof premises and goals extensively. These three methods
all have a formal logic backend and thus are potentially very general. But they all require the
conjectures to be similar to the premises or goals of the theorem, while the conjecture that is
half way between them is the most effective at reducing the size of the search space. Proof
planners and critics also need explicit instructions in the meta-logic of the proof assistant and
can be costly to deploy.

A refreshing attempt was Urban and Jakub̊uv’s system [UJ20], where they fed theorems in
Mizar [Rud92] in textual form to a GPT-2 style transformer [RWC+19] and directly sampled
new theorem statements from it. However, the sampling was purely unconditional, so the
generated statements could be seen as random extrapolations of other theorems in the latent
space. Unsurprisingly, most generated theorems ended up quite trivial; how they related to
other theorems, if at all, was entirely opaque. The IsarStep dataset [LYWP21] consists of
intermediate conjectures in the Isabelle proof assistant [NPW02], but it suffers from requiring
conjectures to be equivalent to the ground truth, when multiple equally valid proofs may have
non-equivalent conjectures.
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