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The Suggested Upper Merged Ontology (SUMO) [13, 14] is a comprehensive ontology of
around 20,000 concepts and 80,000 hand-authored logical statements in a higher-order logic,
that has an associated integrated development environment called Sigma [16]1 that interfaces to
leading theorem provers such as Eprover [19] and Vampire [12]. In previous work on translating
SUMO to THF [2] a syntactic translation to THF was created but did not resolve many aspects
of the intended higher order semantics of SUMO. It is our objective in our current efforts to
lay the groundwork for a new translation to TH0, based on expressing SUMO in set theory.
We believe this will attach to SUMO a stronger set-theoretical interpretation that will allow
deciding more queries and provide better intuition for avoiding contradictory formalizations.
Once this is done, our plan is to train ENIGMA-style [5–8] query answering and contradiction-
finding [20] AITP systems on such SUMO problems and develop autoformalization [9–11,23,24]
methods targeting common-sense reasoning based on SUMO.

In earlier work, we described [16] how to translate SUMO to the strictly first order language
of TPTP-FOF [18] and TF0 [15, 22]. SUMO has an extensive type structure and all relations
have type restrictions on their arguments. Translation to TPTP FOF involved implementing
a sorted (typed) logic axiomatically in TPTP by altering all implications in SUMO to contain
type restrictions on any variables that appear.

We give a grammar for the fragment of the SUMO language in the domain of our translation
of SUMO. There are some aspects of SUMO that do not fall into this grammar – namely formulas
with modal or probabilistic operators. We have ordinary variables (x), row variables (ρ) and
constants (c). We mutually define the sets of terms t, spines s and formulas ψ as follows:

t ::= x|c|x s|c s|(κx.ψ)

s ::= t s| · |ρ

ψ ::= ⊥|⊤|(¬ψ)|(ψ → ψ)|(ψ ∧ ψ)|(ψ ∨ ψ)|(ψ ↔ ψ)|(∀x.ψ)|(∃x.ψ)|(t = t)|c s

The definition is mutually recursive since the term κx.ψ depends on the formula ψ. Of course,
κ, ∀ and ∃ are binders.

Properly parsing SUMO terms and formulas requires mechanisms for infering implicit type
guards for variables (interpreted conjunctively for κ and ∃ and via implication for ∀). Free
variables in SUMO assertions are implicitly universally quantified. For simplicity, we assume
all type guards and implicit quantifiers have already been inferred (as in [16]) before beginning
the translation.

Our translation maps terms t and spines s to sets and formulas ψ to set theoretic proposi-
tions. The particular set theory we use is higher-order Tarski-Grothendieck as described in [4].
For simplicity we assume SUMO variables (both ordinary and row) are also set theoretic vari-
ables ranging over sets. We likewise assume all SUMO constants are also set theoretic constants
(with the exception of instance and subclass, described below). To translate spines, we need
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a way to form lists as sets. We do this generically by simply assuming a set nil, an operator
cons taking two sets to a set (meant to be the cons pair) and an operator listprod taking a two
sets to a set (where listprod A B is meant to be the set of cons pairs cons a b where a ∈ A
and b ∈ B). We also assume a special set U, which will act as the universe of elements that
may be members of classes. The universe is assumed to be closed under set theoretic function
application and the list operators mentioned above.

A major commitment of our translation is that, if ti are SUMO terms translated to sets t′i,
then SUMO formulas of the form instance t1 t2 will translate to t′1 ∈ t′2 and SUMO formulas of
the form subclass t1 t2 will translate to t′1 ⊆ t′2.

We isolate a few special cases in SUMO: Class, SetOrClass, Abstract and Entity. These
are considered classes in SUMO, but will be considered superclasses in our translation. In
particular, the interpretation of Class will be the ℘U, power set of U. Hence every member of
the interpretation of Class will be a subset of U. Since SUMO declares SetOrClass, Abstract
and Entity to contain Class, none of these four superclasses can be a member of ℘U. Whenever
SUMO globally declares t1 to be a subclass of t2, we also declare the corresponding sets t′1 and
t′2 to be members of ℘U, except in the four special superclass cases.

The translation of spines is the obvious one: we use nil for the empty spine, cons for a term
followed by a spine, and the same variable ρ for row variables. For terms, we translate x and c
directly, since we assumed these are variables and constants in the set theory. We translate x s
and c s by using set theoretic function application (where the translation of the spine s is the
argument). We translate κx.ψ as {x ∈ U|ψ′} where ψ′ is the translation of ψ. Translation of
formulas proceeds in the obvious way, with only the c s case being noteworthy. Note that c s
is both a term and a formula. Interpreting c s as a term gives a set b and we translate c s to
the formula 0 ∈ b. The idea is that b will be either 0 or 1, with 0 ∈ b being false if b is 0 and
true if b is 1.

Future work While we have an incomplete translation of all the elements of SUMO that
are beyond syntactic first order expressions, we now have a basis for mapping SUMO into
set theory. The current translation addresses the κ binder, a term level binder one cannot
represent in standard first-order logic. In addition, we can translate row variables directly as
sets, although we expect more work is needed to create proper bounds for quantifiers of row
variables. In addition a future translation should account for temporal holdsDuring and modal
operators (including modalAttribute, confersRight etc). We expect this to be the next stage
of our efforts.

An initial use the mapping will be to have a type-checker that gives immediate feedback to
SUMO developers on one aspect of the correctness of their higher-order axioms, in the same
way that the TPTP FOF and TF0 translations provide feedback on the correct use of types in
the FOF portion of SUMO.

We have some inference tests for SUMO2 for TPTP FOF and TF0. We will expand this
corpus to include tests expressible in the new TH0 translation. This will serve as a regression
suite for SUMO’s higher-order content, as well as a source for testing the performance of HOL
provers, such as Satallax [3], Zipperposition [1] and LEO-III [21].

It is possible that set theory provides a model for (some part or all of) SUMO after the
translation. Proving that at least portions of SUMO have a model would be a much stronger
statement than current method that only allow us to say that no contradictions have been found
with first order theorem proving within a large set of tests and a generous time bound [17].

2https://github.com/ontologyportal/sumo/tree/master/tests/TPTP
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1 Appendix
Examples We briefly consider two first-order example queries and three queries involving κ.
Queries differ from assertions in that their free variables are implicitly existentially quantified,
with implicit type guards added conjunctively. We prove the translated query in the Megalodon
interactive prover (the successor to the Egal system [4]).

Oure first example is given by the SUMO query:

(instance Org1-1 Organization)
(query (member ?MEMBER Org1-1))

This translates into Megalodon as follows:

Variable s_ORG1_x2D1:set.
Hypothesis p5315: (s_ORG1_x2D1 :e s_ORGANIZATION).
Theorem p5316: exists v_MEMBER, v_MEMBER :e s_PHYSICAL

/\ (bp (s_MEMBER (cons v_MEMBER (cons s_ORG1_x2D1 nil)))).

The (interactively constructed) proof makes use of (translated) SUMO assertions that all col-
lections have a physical object member and that organizations are collections.

Our second example is given by the SUMO query:

(=>
(and

(instance ?A Animal)
(not

(exists (?PART)
(and

(instance ?PART SpinalColumn)
(part ?PART ?A)))))

(not
(instance ?A Vertebrate)))

(not
(exists (?SPINE)

(and
(instance ?SPINE SpinalColumn)
(part ?SPINE BananaSlug10-1))))

(instance BananaSlug10-1 Animal)

(and
(instance BodyPart10-1 BodyPart)
(component BodyPart10-1 BananaSlug10-1))

(query (instance BananaSlug10-1 Invertebrate))

This translates into the following Megalodon formalization:

Variable s_SPINALCOLUMN:set.
Hypothesis p5320: forall v_A, v_A :e s_ENTITY -> v_A :e s_OBJECT ->
((v_A :e s_ANIMAL)

/\ (~ (exists v_PART, v_PART :e s_ENTITY /\ v_PART :e s_OBJECT
/\ (v_PART :e s_SPINALCOLUMN) /\ (bp (s_PART (cons v_PART (cons v_A nil))))))
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-> (~ (v_A :e s_VERTEBRATE))).
Variable s_BANANASLUG10_x2D1:set.
Hypothesis p5321: (~ (exists v_SPINE, v_SPINE :e s_ENTITY /\ v_SPINE :e s_OBJECT

/\ (v_SPINE :e s_SPINALCOLUMN) /\ (bp (s_PART (cons v_SPINE (cons s_BANANASLUG10_x2D1 nil)))))).
Hypothesis p5322: (s_BANANASLUG10_x2D1 :e s_ANIMAL).
Variable s_BODYPART10_x2D1:set.
Hypothesis p5323: (s_BODYPART10_x2D1 :e s_BODYPART)

/\ (bp (s_COMPONENT (cons s_BODYPART10_x2D1 (cons s_BANANASLUG10_x2D1 nil)))).
Theorem p5324: (s_BANANASLUG10_x2D1 :e s_INVERTEBRATE).

The proof uses the translation of the SUMO assertion that the classes of vertebrates and
invertebrates form a partition of the class of animals.

Our κ examples are all variants of the same idea, and all are easily provable. The first κ
example query is given in SUMO as follows:

(query (forall (?V) (=> (instance ?V Atom)
(forall (?E) (=> (instance ?E Electron)

(=> (part ?E ?V)
(instance ?E (KappaFn ?x (and (part ?x ?V) (instance ?x Electron))))))))))

This translates to the following Megalodon formalization:

Theorem p5326: (forall v_V, v_V :e s_ENTITY -> v_V :e s_OBJECT -> ((v_V :e s_ATOM)
-> (forall v_E, v_E :e s_ENTITY -> v_E :e s_OBJECT -> ((v_E :e s_ELECTRON)
-> ((bp (s_PART (cons v_E (cons v_V nil))))
-> (v_E :e {v_X :e Univ1 | v_X :e s_OBJECT /\ v_X :e s_ENTITY

/\ (bp (s_PART (cons v_X (cons v_V nil)))) /\ (v_X :e s_ELECTRON)})))))).

The second κ example query is given in SUMO as follows:

(query (forall (?V) (=> (instance ?V Atom)
(forall (?E) (=> (instance ?E Electron)

(=> (instance ?E (KappaFn ?x (and (part ?x ?V) (instance ?x Electron))))
(part ?E ?V)))))))

This translates to the following Megalodon formalization:

Theorem p5327: (forall v_V, v_V :e s_ENTITY -> v_V :e s_OBJECT -> ((v_V :e s_ATOM) ->
(forall v_E, v_E :e s_ENTITY -> v_E :e s_OBJECT -> ((v_E :e s_ELECTRON)
-> ((v_E :e {v_X :e Univ1 | v_X :e s_OBJECT /\ v_X :e s_ENTITY

/\ (bp (s_PART (cons v_X (cons v_V nil)))) /\ (v_X :e s_ELECTRON)})
-> (bp (s_PART (cons v_E (cons v_V nil))))))))).

The final κ example does not use κ in the statement, though κ is vital to proving the translated
theorem. In SUMO the example is given as follows:

(query (forall (?V) (=> (instance ?V Atom)
(forall (?E) (=> (instance ?E Electron)

(exists (?C)
(and (instance ?C Class)

(<=> (part ?E ?V)
(instance ?E ?C)))))))))

This translates to the following Megalodon formalization:

Theorem p5328: (forall v_V, v_V :e s_ENTITY -> v_V :e s_OBJECT -> ((v_V :e s_ATOM) ->
(forall v_E, v_E :e s_ENTITY -> v_E :e s_OBJECT -> ((v_E :e s_ELECTRON)
-> (exists v_C, v_C :e s_ENTITY /\ v_C :e s_CLASS /\ (v_C :e s_CLASS)

/\ ((bp (s_PART (cons v_E (cons v_V nil)))) <-> (v_E :e v_C))))))).
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Converting SUMO to First Order All the strictly higher-order content in SUMO was
previously lost in translation to first-order, whether TPTP or TF0. The translation steps
include:

• expanding ”row variables” which allow for stating axioms without commitment to the
number of arguments a relation has, similar to Lisp’s @REST construct

• instantiating ”predicate variables” with all possible values. This is needed for any axiom
that has a variable in place of a relation.

• expanding the arity of all variable arity relations as set of relations with different names
depending upon their fixed number of arguments

• renaming any relations given as arguments to other relations

SUMO has no native implementation in a theorem prover, and has no formal semantics
beyond that of standard first order logic, so the process of translating SUMO into a language
with a fully specified semantics, such as TPTP_FOF, TF0 or THF gives SUMO its semantics.

Type Mechanisms All relations (including functions) in SUMO have a type signature. As
a consequence, we don’t need an explicit syntax for types/sorts of variables, and can deduce
them automatically. We can have classes as well as instances as arguments. The domain and
range relations are meta-predicates that direct the Sigma translators to state that arguments
to a given relation (or the return type of a function, respectively) are instances of a given type.
The domainSubclass, and rangeSubclass relations state that arguments to a given relation
(or the return type of a function, respectively) are a given class or one of its subclasses. For
example

(domain DensityFn 1 MassMeasure)
(domain DensityFn 2 VolumeMeasure)
(instance DensityFn BinaryFunction)
(range DensityFn FunctionQuantity)

DensityFn is a BinaryFunction that takes an instance of a MassMeasure and a VolumeMeasure,
respectively, as its first and second arguments. In

(domainSubclass typicalPart 1 Object)
(domainSubclass typicalPart 2 Object)
(instance typicalPart BinaryPredicate)

the first and second arguments to the typicalPart relation are of the class Object or one
of its subclasses.

THF Translator Below by SUMO objects (SOs) we mean arbitrary SUMO classes and in-
stances.

Our translator maps all SUMO objects to sets in HO TG set theory. The subclass relation
is translated as inclusion and the instance relation as membership. SOs that are potentially
large such as abstract, mathematical and related SOs thus become sets that may live in higher
TG universes.

SOs can be applied to other SOs and variables, creating terms and formulas. Such SOs will
be sets that encode relations and functions. Their application to other SOs is the corresponding
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application of the set theoretical functional and relational sets to other sets. To handle variable
arities and row variables, arguments are always appended together into lists.

SUMO quantifiers and logical connectives are mapped directly to their FOL counterparts.
Applications that are at predicate positions in formulas are casted by a special bp predicate
into propositions.

To illustrate a significant higher order construct in SUMO, consider the following problem
that uses an axiom with KappaFn, which defines a class on the fly, without the need to reify it.

(<=>
(totalFacilityTypeInArea ?AREA ?TYPE ?COUNT)
(cardinality

(KappaFn ?ITEM
(and

(instance ?ITEM ?TYPE)
(located ?ITEM ?AREA))) ?COUNT))

(instance DejvickaStation TrainStation)
(located DejvickaStation PragueCzechRepublic)
(instance HradCanskaStation TrainStation)
(located HradCanskaStation PragueCzechRepublic)

Q: (totalFacilityTypeInArea ?AREA ?TYPE ?COUNT)
A: [?AREA=PragueCzechRepublic,?TYPE=TrainStation,?COUNT=2]

The first axiom states that for the ternary relation of totalFacilityTypeInArea, which
related an area, a class of Object and a count of those objects within that area, it is equivalent
to the cardinality of the instances of the class that are defined to be instances of the same type,
and present within a particular ?AREA.

We should be able to ask what relations are deducable for totalFacilityTypeInArea and
get the answer that, for this knowledge base, there are two instances of TrainStation that are
known to be in the CzechRepublic.

(SLEEPING c= PSYCHOLOGICALPROCESS).
(ASLEEP :e CONSCIOUSNESSATTRIBUTE).
((bp (ATTRIBUTE (cons v_AGENT (cons ASLEEP nil))))
\/ (bp (ATTRIBUTE (cons v_AGENT (cons AWAKE nil))))
-> (bp (ATTRIBUTE (cons v_AGENT (cons LIVING nil))))).

are the translations of:

(subclass Sleeping PsychologicalProcess)
(instance Asleep ConsciousnessAttribute)
(=>

(or
(attribute ?AGENT Asleep)
(attribute ?AGENT Awake))

(attribute ?AGENT Living))
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