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1 Introduction

Modern saturation based theorem provers such as E [8] and Vampire [5] rely on heuristics
to guide their search. Historically, manually engineered heuristics have been the norm. More
recently, advances in machine learning have inspired attempts to leverage that power for guiding
search. While most efforts have used supervised learning, reinforcement learning (RL) has also
been successfully applied [3, 1, 6]. This work aims to incorporate RL into E in a way that
generalizes the approach taken by E’s --auto mode. In the words of E’s documentation:

Clause selection is determined by a heuristic evaluation function, which con-
ceptually sets up a set of priority queues and a weighted round robin scheme
that determines from which queue the next clause is to be picked.

The order of each priority queue is dictated by its corresponding Clause Evaluation Function
(CEF). When E is invoked on a problem in --auto mode, E analyzes the problem and selects a
set of CEFs and a weighted round-robin CEF-schedule. The CEF-schedule is used for all given
clause selections throughout the proof attempt. The approach taken in this work is to replace
the CEF-schedule with an external mapping from the state of E to a CEF to use for the next
given clause selection. When this mapping is allowed to be stochastic, it can be thought of as
mapping the state of E to a probability distribution over CEFs.

2 Reinforcement Learning Framing

The policy of an RL agent is a mapping from the state of the RL environment to a categorical
probability distribution over the available actions. When queried with a state, s, the agent
samples an action, a, from the distribution πθ(s), and receives a reward from the environment.

Previous approaches to RL for ATP have mostly been tableaux-based where the state features
are derived from the tableaux and actions are tableaux extension steps [3]. The latest saturation-
based approaches to RL for ATP essentially represent state as the clauses in the processed set
and represent actions as the potential given clauses from the unprocessed set [1, 6]. These
sets of clauses are encoded via neural networks such as Graph Neural Networks. Rewards are
typically given for completing proofs.

In this work, reinforcement learning is incorporated into E as follows: E is invoked on a
problem with a fixed set of CEFs. The state of E is sent to the agent each time E needs to select
a given clause. At the time of writing, the policy being used, πθ, is implemented by a shallow
neural network with ReLU activation on the hidden layers and a softmax activation function
on the output layer. The state consists of 4 features: the number of clauses and average clause
weight within the unprocessed and processed sets, but many possible features exist. The agent
responds with one of the CEFs as its action. E chooses a given clause using the corresponding
CEF. If the selection completes a proof then the reward is one, otherwise the reward is zero. The
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Figure 1: Experimental Setup and Training Architecture

parameters of the policy are learned via Monte-Carlo policy gradients (aka REINFORCE [9]).
Originally, an epsilon-greedy strategy with Q-learning was considered, but was rejected due to
concerns that the agent would heavily favor one CEF in underexplored regions of state-space.

3 Architecture

The architecture shown in Figure 1 is used to train πθ:

1. A python script e caller.py repeatedly invokes E on problems from the “bushy” prob-
lems of the MPTP2078 dataset [2]. This script allows for control of the sampling distri-
bution over problems and can be used to focus training on easy or hard problems.

2. A python script gain xp.py receives states and rewards from E and sends actions to E.
It chooses actions via a saved policy and saves completed proof attempts to disk. All
communication between E and gain xp.py is performed using named pipes.

3. A python script train policy.py continually updates the policy used by gain xp.py

using the saved proof attempts.

Multiple instances of e caller and gain xp are run in parallel to speed up learning.

4 Initial Results

For the results shown in Table 1, a constant list of 75 CEFs was extracted from the CEF-
schedules employed by E’s --auto mode. e caller.py was configured to try all MPTP2078
bushy problems, and E is invoked with a timeout of 20 seconds. To see if any learning occurs, a
uniform distribution over the 75 CEFs (ignoring state) is used as a baseline policy. The simplest
extension of this policy is to learn constant probabilities with which to choose each CEF (still
ignoring state). Next, a simple neural network that takes state into account is considered.
Finally, these policies are compared to E’s --auto mode.

Approach Solved
Uniform Distribution 1105
Learned Distribution 1105
Simple Neural Network 1110
E –auto 1156

Table 1: Number of MPTP2078 Bushy Problems solved by different approaches
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5 Concerns and Future Work

There are various reasons why E’s auto mode still has an advantage over the approaches pre-
sented here. The most apparent reasons are that E’s auto mode has a much richer space of
features, and that the neural network used in these experiments is very simple. A more in-
sidious reason is that the CEF-schedules used in E’s --auto mode were explicitly evolved to
solve more problems, whereas the policy gradient training directly favors finding proofs more
quickly. From an RL perspective, it seems that the goal of quickly solving easy problems may
be in conflict with the goal of solving hard problems. Perhaps oversampling hard problems in
e caller.py could help with this. Alternatively, the policy gradient loss could be scaled by
some notion of problem difficulty. Future work will also explore Actor-Critic [4] models, which
typically outperform REINFORCE.

It is unclear whether CEF choices are an expressive enough action space for improving
guidance using RL. This work opted for CEFs as actions because it is convenient, and perhaps
more sample efficient, to have a consistent set of available actions. Another reason for using
CEFs is that it side-steps the issue of having to represent clauses as input for neural networks.
(Graph Neural Networks, Recurrent Neural Networks, and Recursive Neural Networks have all
been used with varying degrees of success for this [7].) Despite these theoretical benefits to using
CEFs as actions, with the exponential growth of the unprocessed set during a proof attempt,
the CEFs can only represent a small fraction of the available given clause selections. If the best
clause to select is not preferred by any of the CEFs, then it is impossible to select. One might
also be concerned that 75 CEFs is too many for a first attempt at learning a CEF-schedule. As
a response to this, a smaller list of 7 CEFs was established. These 7 CEFs were chosen to be
very different from one-another in order to retain an expressive choice of action. Despite this,
the results were qualitatively similar to the results in Table 1. The only appreciable difference
was that with 7 CEFs, the models peaked at a much worse performance of around 43% problems
proved.
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