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Abstract

A difficultly which must be addressed by inductive logical programming (ILP) systems
is how to deal with the enormous space of plausible solutions. The majority of modern ILP
systems approach this problem through the meta-learning paradigm, that is, only consider
plausible solutions which are constructable from a set of clause templates. This approach
has been adopted by investigations into neuro-symbolic ILP. Our investigation uses clause
templates together with a variant of δILP , to expand the hypothesis space, rather than
contract it. Our experiments support the following hypothesis: providing gradient descent
with a larger solution space aids the discovery of explanatory hypotheses.

Inductive Logic Programming (ILP) [5] is a form symbolic machine learning approach which
learns explanatory hypothesis from positive and negative evidence together with fixed back-
ground knowledge. These explanatory hypotheses take the form of a logic program. In contrast
to statistical approaches to machine learning, ILP systems are data-efficient in that a complex
hypothesis can be learned from only a few examples; in some cases, even a single example
is sufficient. Additionally, these hypotheses tend to be human-readable and provide a route
towards explainable AI. While there are many positive aspects of the approach, ILP systems
ability to generalize is typically, negatively impacted by noisy input, and is limited to certain
problem domains [1, 4].

Attempts to combine the flexibility and agnosticism to noise of statistical learning with
the benefits of a firm logical foundation, forms the bedrock of the current investigations into
neuro-symbolic AI [6]. In this abstract, we discuss our modification of a prominent approach
to neuro-symbolic ILP, δILP [3]. This system is based on the learning from satisfiability ILP
paradigm. In the case of δILP, the plausible hypothesis space is turned into a SAT problem
where a model denotes a hypothesis. The hypothesis space is finite as a fixed program template
is provided and the background knowledge is assumed to be ground and finite. This classical
SAT problem can be transformed into a soft SAT problem by replacing the classical operators by
differentiable ones. For example, Classical conjunction is replaced by the product T-norm [2],
X ∧ Y ≡ x ∗ y.

To understand our investigation we need to briefly introduce the structure of the program
templates used by δILP. Clauses are assumed to be at most length 2, predicate definitions
contain at most 2 clauses, and predicates may take at most 2 arguments. Each auxiliary
predicate definition (including the predicate being learned) is associated with at most two rule
templates defining the structure of its clauses. These rule templates state how many existential
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variables occur within the clause and whether the predicate symbols occurring therein may be
extensional (defined in the background) or intensional (derived during learning).

Each of the auxiliary predicate definition is associated with a matrix of weights where
each entry denotes how strongly the system believes that a pair of clauses (respecting the rule
templates) is the correct definition for the given predicate. This design choice is prohibitively
expensive and significantly limits uses of the system due to the significant memory requirements.
An alternative would be to assign a weight to each instantiation of the associated rule templates
(so called splitting the definition), however, as discussed in Appendix F of [3], this approach is
less effective for ILP.

In our investigation, we take definition splitting one step further and split not only the
definitions (as was discussed in Appendix F of [3]), but also the individual rule templates.
This entails that for each auxiliary predicate definition entries in the weight vector denote
how strongly the system believes an instance of a predicate (i.e. father(X,Y )) is the correct
choice for a particular position in a particular clause. This significantly reduces the memory
requirement, but also goes far beyond the relaxations made by the Evans and Grefenstette [3]
which they claim are less effective for ILP. To deal with this issue, instead of providing a program
template which roughly matches the structure of the program we expect the system to find, We
provide our modified δILP with many more auxiliary predicate then needed to construct the
goal program. This is possible giving the memory saving resulting from splitting the weight
matrix twice.

Let us consider the example fizz ≡ {X|X ∈ N ∧ 0 = X(mod 3)} from [3]. As background
knowledge the authors provided the zero predicate and instances of the successor predicate up
to 6 (i.e. succ(0, 1),....). The positive examples are 0, 3 and 6 while the negative examples are
all other natural numbers less than 6. This example posed a challenge for δILP and only 10%
of the runs resulted in a mean squared error less than 1e − 4. On the contrary, Up to 95% of
our runs passed a validation phase regardless the mean squared error at the time of halting;
The percentage is dependent on how many auxiliary predicates we allowed (see Figure 1).

This experiment together with a few others seem to contradict the exposition in Ap-
pendix F of [3]. However, it is not clear if these results can be further expended, nor how
this can be generalized to handle more complex ILP task. An alternative approach to a
more efficient search within the large search space would be the inclusion of supervised ma-
chine learning in the proposed framework. We leave these questions to future investigation.

Possible explanatory Hypothesis

for fizz example

fizz(X):- zero(X).

fizz(X):- p1(X,Y),p2(Y).

p1(X,Y):- succ(Y,Z),succ(Z,X).

p2(X):- succ(Y,X),fizz(Y).
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Figure 1: Percentage of runs finding a crisp so-
lution which passes the validation phase.
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