
Towards neuro-symbolic conjecturing

Sólrún Halla Einarsdóttir, Moa Johansson, and Nicholas Smallbone

Chalmers University of Technology, Gothenburg, Sweden.
{slrn, moa.johansson, nicsma}@chalmers.se

Abstract

Theory exploration systems automatically generate mathematical conjectures, by ex-
ploring a set of terms of interest. This search is expensive for large theories, as the set of
terms becomes large. We describe ongoing work in combining data-driven and symbolic
methods for automated conjecturing, where the data-driven part should identify which
kinds of conjectures are likely to be useful and restrict the symbolic search to those ones.
As a first step, we have extracted a dataset of lemma templates from Isabelle’s Archive of
Formal Proofs1.

1 Introduction

Theory exploration is a symbolic technique for automated conjecturing based on testing [7].
It has been used to successfully discover, for example, lemmas needed in automated (co)-
inductive provers [5, 1]. Our theory exploration system QuickSpec [7], takes as input a number
of functions and datatypes, and builds terms of increasing size. The search space is managed
by using already discovered properties to avoid larger terms that could be reduced or subsumed
by something already known. While this works well for smaller signatures (up to around 10–20
functions) and terms up to about 10 symbols, it eventually runs into exponential blow up.
To address this, we developed a variant of QuickSpec called RoughSpec [2], which restricts
the search space to properties of specific shapes using templates. For example, the template
?F (?F (X,Y ), Z) = ?F (X, ?F (Y,Z)) describes an associative binary function ?F . Currently,
the human user decides which templates to use.

We plan to instead select templates automatically using a data-driven approach. As a first
step towards this goal, we have collected and started to analyze a large dataset of lemmas from
Isabelle’s Archive of Formal Proofs. The long term aim is to build a neuro-symbolic system
for conjecturing, where given a theory, a machine learning system selects the most promising
templates, and a symbolic system fills in the templates to produce conjectures, discarding
any conjecture which is trivial, trivially false, or already known. Our hypothesis is that this
approach combines the best of the machine learning and symbolic approaches: machine learning
to learn which parts of the search space to focus on, and symbolic methods to reason about
and evaluate specific conjectures.

2 A Library of Lemma Templates

In our previous work [2], our theory exploration system RoughSpec required the user to provide
templates for the properties they were looking for. We also provided a small collection of ”de-
fault” templates describing some properties we guessed might be useful for theory exploration
based on our intuitions and experience. This collection included templates for properties such
as commutativity and distributivity. In order to gain a more robust empirical understanding of

1https://www.isa-afp.org/index.html

https://www.isa-afp.org/index.html


Towards neuro-symbolic conjecturing Einarsdóttir, Johansson and Smallbone

what kinds of templates are useful and to provide a dataset for data-driven experiments we have
mined equational lemma templates from the Archive of Formal Proofs(AFP). The AFP con-
tains 676 entries from 425 authors, containing almost 200,000 lemmas and more than 3 million
lines of code. The entries consist of proof formalizations from a variety of areas of Computer
Science, Logic and Mathematics and we believe they are a good source of interesting and useful
lemmas, as the lemmas we find there are handwritten as part of proofs that Isabelle users have
seen a reason to formalize.

2.1 Preliminary results

We have collected and performed preliminary analysis on a dataset containing 22,767 equational
lemmas, extracted from 2169 different theory files from 611 AFP entries. For each extracted
lemma we generated a template representation of the lemma statement, showing the statement’s
term structure with function and variable names abstracted away but using integer labels to
keep track of function symbols and variables that occur more than once. The dataset along with
the code used to generate it is available at: https://github.com/solrun/LibraryOfLemmas.

These 22,767 lemmas are captured by 6567 different templates. In Figure 1 we can see that
a small number of templates occur very frequently while the majority occur very seldom with
4099 templates occurring only once. The 10 most frequent templates together describe 3057
lemmas or 13.5% of the lemmas in our set, while more than 50% of the lemmas can be described
using only 266 of the 6567 templates. This supports our hypothesis that only a smaller number
of templates is needed to discover many lemmas using template-based conjecturing.

0 1000 2000 3000 4000 5000 6000
Templates sorted by frequency

0

100

200

300

400

500

600

Nu
m

be
r o

f l
em

m
as

 d
es

cr
ib

ed
 b

y 
te

m
pl

at
e

Template frequency

0 1000 2000 3000 4000 5000 6000
Templates sorted by frequency

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f l
em

m
as

 d
es

cr
ib

ed
 b

y 
te

m
pl

at
es Cumulative frequency of templates

Figure 1: Left: Number of lemmas per template, sorted by frequency. Right: Cumulative
percentage of lemmas in the dataset covered by most frequent templates.

Table 1 shows the top 10 most frequently occurring templates in our dataset, where #
lemmas represents the number of lemmas matching the template, # thys is the number of
different theory files it occurs in and # sessions is the number of different AFP sessions it
occurs in. Template holes are represented by a question mark followed by a capitalized name,
while variables are represented by a capitalized name. Among these common templates, we see
a lot of similarity: many of the templates in Table 1 resemble each other, differing only in the
number of variables or the order of application. Our hypothesis is that we can define a smaller set
of “supertemplates” describing families of similar templates that can be generalized to describe
the different family members, where using those templates and their generalizations we can

2

https://github.com/solrun/LibraryOfLemmas


Towards neuro-symbolic conjecturing Einarsdóttir, Johansson and Smallbone

Template # lemmas # thys # sessions
1 ?F (?G X Y) = ?H (?F X) (?F Y) 611 261 172
2 ?F X = ?G (?H X) 566 265 169
3 X = ?F (?G X) 340 191 139
4 ?F X = ?F (?G X) 280 149 118
5 X = ?F ?G X 247 136 98
6 ?F (?G X Y) Z = ?H (?F X Z) (?F Y Z) 233 90 70
7 X = ?F X ?G 210 132 103
8 ?F X (?G Y Z) = ?H (?F X Y) (?F X Z) 194 90 74
9 ?F = ?G (?H X) 192 65 56
10 ?F = ?G ?H X 184 110 85

Table 1: Top 10 most frequently occurring templates in the dataset.

generate a large proportion of the lemmas we need. For example (1) (6) and (8), (3) (5) and
(7), and (9) and (10) should be grouped together and described by common “supertemplates”.
This would further reduce the space of templates to be searched over by RoughSpec.

In our previous work [2], we defined a set of 10 default templates capturing very common
properties which we found useful in our case studies. Comparing these to the most frequent
templates as shown above, we see that 4 out of our 10 default templates are also in the 10 most
frequently occurring templates in our dataset. Of the remaining six default templates one did
not show up at all, and the other occur in places 20–388. The second most commonly occurring
template in the dataset, ?F X = ?G (?H X), is in a style we had previously disregarded as
being too general to be suited to template-based theory exploration, but seeing how common
this exact form of equivalence template seems to be we will definitely try out using it in future
experiments. The differences between our collection of default templates and the most common
templates in the dataset show the value of collecting a dataset for empirical evaluation.

Extending the dataset. We are currently expanding this dataset to also contain non-
equational lemmas, such as conditionals, inequalities, and predicates. We also plan to extend
the template language to cover e.g. lambda abstractions and quantifiers. With these exten-
sions we should be able to cover all the lemmas in the AFP. Adding more data concerning
for example the topic of the theory where the lemma in question is defined and used or the
function definitions involved may also prove necessary in order to use this dataset to learn what
templates are useful in various theorem proving contexts.

3 Future steps and related work

Having compiled a library of lemma templates, our next steps will be to analyze the data
available there and apply it in the context of theory exploration and theorem proving. Our aim
is to develop machine-learning based methods to make helpful template suggestions for a given
set of functions. We envisage this implemented as a machine learning model trained to predict
likely useful templates, given a suitable representation of a theory (i.e. a set of definitions
of datatypes, functions and perhaps already known properties). These templates are then
passed to a symbolic theory exploration systems (RoughSpec), which instantiates, tests and
possibly proves properties before presented to the user. This has some similarities to neuro-
symbolic program synthesis systems like DreamCoder [3], which use a neural network to predict

3



Towards neuro-symbolic conjecturing Einarsdóttir, Johansson and Smallbone

a symbolic program, given a set of input-output examples. We could also use clustering methods
to group together templates that are often seen together in the same theory formalization and
then suggest templates based on lemmas that have already been defined by the user or found
by exploration.

There have been recent attempts to use large language models for conjecturing tasks [8, 6].
A problem here is that the output typically contains a mixture of interesting theorems, non-
theorems that “look like” theorems as well as many copies and alpha-renamings of lemmas
occurring in the training data. Symbolic theory exploration methods are usually better at
targeting more specifically novel conjectures, but struggle with large scale theories instead.

We believe that the most promising way forward is a combination of neural and symbolic
methods, where the neural part makes suggestions of potential analogies to similar theories seen
before, while they symbolic part fills in the details in such a way that redundant conjectures
are avoided. Heras et al. demonstrated a prototype system similar to what we propose, for
suggesting lemmas by analogy via templates [4]. Here, the user is supposed to be wanting to
prove a particular conjecture, and asks the system for analogous prior theorems. If such a
similar theorem exists (determined by data-driven methods), and its proof uses a lemma, then
the lemma was generalized into a template. This template was then instantiated using symbols
relevant to the new proof attempt at hand. Our proposed system differs in that we do not want
to rely on a particular proof attempt, but rather suggest interesting conjectures based on the
functions and datatypes in scope, and how they are defined.

References

[1] S. H. Einarsdóttir, M. Johansson, and J. Å. Pohjola. Into the infinite - theory exploration for
coinduction. In Proceedings of AISC 2018, pages 70–86, 01 2018.

[2] S. H. Einarsdóttir, N. Smallbone, and M. Johansson. Template-based theory exploration: Discover-
ing properties of functional programs by testing. In IFL 2020: Proceedings of the 32nd Symposium
on Implementation and Application of Functional Languages, IFL 2020, page 67–78, New York,
NY, USA, 2020. Association for Computing Machinery.

[3] K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A. Solar-Lezama, and
J. B. Tenenbaum. DreamCoder: Bootstrapping inductive program synthesis with wake-sleep library
learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, page 835–850, New York, NY, USA, 2021. Association for
Computing Machinery.

[4] J. Heras, E. Komendantskaya, M. Johansson, and E. Maclean. Proof-pattern recognition and lemma
discovery in ACL2. In Proceedings of LPAR, 2013.

[5] M. Johansson, D. Rosén, N. Smallbone, and K. Claessen. Hipster: Integrating theory exploration
in a proof assistant. In Proceedings of CICM, pages 108–122. Springer, 2014.

[6] M. N. Rabe, D. Lee, K. Bansal, and C. Szegedy. Mathematical reasoning via self-supervised skip-
tree training. In Proceedings of ICLR, 2021.

[7] N. Smallbone, M. Johansson, K. Claessen, and M. Algehed. Quick specifications for the busy
programmer. Journal of Functional Programming, 27, 2017.

[8] J. Urban and J. Jakub̊uv. First neural conjecturing datasets and experiments. In Proceedings of
CICM, 2020.

4


	Introduction
	A Library of Lemma Templates
	Preliminary results

	Future steps and related work

