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Introduction. We envision assistive systems for informal mathematics that suggest proof
steps or solutions to a user, inspired by the use of language models in formal proof assistants (e.g.
[4, 6, 7, 8, 11]) and informal premise selection [3, 5, 13]. We study two new generation tasks in
natural mathematical language: suggesting the next step in a proof, and full-proof generation.

We develop NaturalProver, a language model that generates proofs by conditioning
on background references (theorems, definitions), and optionally enforces their presence with
constrained decoding. NaturalProver improves the quality of next-step suggestions and
generated proofs over fine-tuned GPT-3 [1], with either retrieved or human-provided references,
according to human evaluations from university-level mathematics students.

NaturalProver is capable of proving short (2-6 step) theorems and providing next-step
suggestions that are rated as correct and useful more than 50% of the time, which is to our
knowledge the first demonstration of these capabilities using neural language models.

Data. We create a NaturalProofs-Gen dataset with data adapted from the ProofWiki
domain of NaturalProofs [13]. Each example pairs a theorem x with a gold proof y =
(y1, . . . , yT ), where each yt is a variable-length proof step. Each proof mentions references
{r1, . . . , rRy} from a reference set of roughly 33k theorems and definitions, analogous to how
Wikipedia articles reference other pages. For example, Figure 1 shows a 4-step proof with
references in blue. We use splits from NaturalProofs for training, and create evaluation sets
with 100 validation and 100 test theorems.

Tasks. The proof generation task is to generate a proof y given theorem x. The next-step
task is to generate a next step yt given theorem x and proof history y<t from a gold proof. We
consider an additional provided setting where the model is given gold references {r∗1, . . . , r∗Ry

}.
Methods. We study a vanilla language model and two ‘knowledge-grounded’ variations, along
with the effect of constrained decoding. For each model, we fine-tune GPT-3 Curie, a ≈13B
parameter autoregressive transformer language model trained on internet text.1

Figure 1: NaturalProver proves Even Integer Plus 5 is Odd.

1https://blog.eleuther.ai/gpt3-model-sizes/. We use the OpenAI API. We also release open-source
GPT-J and GPT-2 models, fine-tuning and evaluation code, and the NaturalProofs-Gen dataset.

https://blog.eleuther.ai/gpt3-model-sizes/
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Reasoning Errs (↓) Lexical Errs (↓) Per-Step (↑) Full Proof (↑)
Method Ref. Eqn. Other Lang. Sym. Useful Correct Useful Correct

GPT-3 (curie) 30.92 32.54 40.15 5.61 5.24 25.69 28.18 20% 13%
Retrieved 23.52 37.55 23.66 4.54 6.19 41.54 33.56 32% 24%
Provided 25.84 35.93 25.23 8.41 5.35 39.60 26.30 35% 24%

+constrained 23.61 28.54 18.45 5.58 3.65 46.57 35.41 45% 32%

Next-step 19.70 26.32 19.10 8.57 5.86 51.43 42.86 – –

Table 1: Human evaluation results for full-proof and next-step generation (bottom).

The knowledge-grounded models condition on references, pθ(y|x, R). As language model
context windows prevent conditioning on full reference documents, we condition on reference
titles, and fine-tune on (title, content) pairs, which lets the model memorize the associated
content. For example, Fig 1 shows Even Integer and its content. We study 3 variants:

1. Baseline. This model is simply fine-tuned on the 12.5k (theorem, proof) training examples.
At test time, the model is given a theorem and uses greedy decoding to generate a proof.

2. Retrieved. This model is conditioned on retrieved references, pθ(y|x, r̂1, . . . , r̂20). We
use a pretrained joint retrieval model from [13], which was trained on NaturalProofs to
map each theorem to the references in its ground-truth proof. At test time, we condition
on a test theorem and its top-20 retrieved reference titles, and use greedy decoding.

3. Provided. This model is conditioned on human-provided references, pθ(y|x, r∗1, . . . , r∗Ry
),

meaning {r∗1, . . . , r∗Ry
} is the set of reference-titles mentioned in a ground-truth proof. At

test time, the model receives a test theorem and reference titles from a ground-truth proof.

Constrained decoding. We use constrained decoding to improve reference usage in the
provided setting, as references are known to be relevant to a proof of the theorem. We generate
step-by-step by sampling multiple step candidates, keeping those with high log-probability and
reference-coverage in a beam, and continuing to the next step.

Evaluation. We created a schema of reasoning and lexical errors and an online system for per-
step and full proof annotation. We recruited 15 students from the Departments of Mathematics
and Applied Mathematics at the University of Washington as annotators. Annotators label
the {0, 1} correctness, usefulness, and presence of errors in each proof step, then rate the full
proof’s correctness and usefulness. We also find positive correlations between human judgments
and automatic lexical (e.g. Gleu) and grounding (e.g. Reference-F1) metrics and discuss these
results in the talk.

Main results. We show our main human evaluation results in Table 1. Knowledge-grounding,
either retrieved or human provided, improves proof generation. Constrained decoding further
improves the provided-knowledge model, with 32% of its proofs rated as correct and 45% rated
as useful as an aid for human proof writers. On the per-step level, 35% of its proof steps are
correct and 47% are useful, increasing to 51% useful and 43% correct given a correct proof-so-far.
On the other hand, our models often struggle with correctly deploying and utilizing references
(23.6% reference error rate), doing symbolic derivations (28.5% equation error rate), and longer
proofs. We give quantitative and qualitative analyses of these successes and errors in the talk.

Looking forward. Our results suggest that useful interactive proof assistants for in-
formal mathematics are plausible as methods improve further. Investigating architectural
improvements [14], iterative improvement [2, 7], and pretraining [9], as well as the role of
formalization [10, 12] in informal proof generation are interesting future directions.
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