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The Promise and the Hype

Reinforcement learning (RL) [18], especially its deep variant relying on modern neural networks,
is probably the most fashionable method for attacking problems in our machine learning (ML)
era. The impressive successes in board games [13] or on the ATARI benchmark [3] justify the
excitement. Moreover, it is very appealing to have the machine look for a solution unbiased
by our preconceptions, since this intuitively increases the chances of discovering brand new
strategies. However, we should also be aware of the various shortcomings of the approach [4].

In automatic theorem proving (ATP), we have seen the Monte-Carlo tree search paradigm
[8] extend a connection tableaux prover [7] or, more recently, a saturation-based setup called
TRAIL [1], featuring an interesting idea of multiplicative attention for expressing a dependence
on prover’s state. Despite the partial successes, we still seem to be far from getting a system that
could challenge a state-of-the-art prover in a real-time evaluation (Kaliszyk et al. [7] use abstract
time, TRAIL falls short of improving over plain E [11]), let alone on a versatile benchmark such
as the TPTP library [17] (both mentioned works target a more uniform Mizar benchmark).

Ancient Lore and its Contemporary Extensions

It is instructive to recall the basic RL ingredients and project them to the state-of-the-art
(SotA) saturation-based ATP technology and its recent improvements by ML. In this light, we
can think of a prover as being guided by an agent, who monitors the prover’s state and chooses
appropriate actions to reach the goal of deriving the empty clause, ideally in the shortest time
possible. A learning feedback for the agent should come in the form of a reward, received after
executing each individual action or at the end of a proof attempt.

In saturation-based ATP (setting aside the role of proving strategies) the guiding agent
is most fittingly identified with the clause selection heuristic [see, e.g., 12]. A proving state
naturally decomposes into two conceptual parts: a static one, the formula subject to proving,
and an evolving one, any information influencing what should be done next in order to prove
it. Finally, the available actions correspond simply to the passive (unprocessed) clauses.

The author finds it noteworthy, that SotA provers, backed by decades of research in the
field, mostly ignore the state for clause selection. Except possibly for a few bits to remember
which queue to select the next clause from, the effective state is blank1 and each selection
aims greedily at the best available clause. Could this indicate there is actually little hope for
meaningful proof planning in general purpose ATP?

The situation is different with the recent improvements by ML. Information about the
conjecture (i.e., a static state) has been included since the second version of ENIGMA [5]
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1Conjecture clauses sometimes get a different status for some heuristics [e.g., 14], but only uniformly, not
depending on what the conjecture actually is.



and, before that, by the work of Loos et al. [10]. While the latter paper does not perform a
corresponding ablation, ENIGMA is reported to moderately improve thanks to the conjecture
features.2 As mentioned, an evolving state is proudly included in TRAIL [1] and also in, e.g.,
ENIGMAWatch [2]. In both cases, the papers report on an improvement thanks to the evolving
state feature. Although this is only shown for Mizar, maybe there is hope after all!

Let us close this section by returning to the concept of reward. It seems unrealistic to ever
learn useful guidance for ATP by only rewarding the final proving step.3 All the mentioned
systems agree and retrospectively reward (or mark as positive) not just the final, but all the
actions that contributed to the found proof. An ambiguity in the terminology seems to arise:
can we have RL without an (explicit) reward? In the light of the just explained, does TRAIL
really differ that much from looping in ENIGMA [6], which also iteratively improves the learned
knowledge, generating training data for the next iteration using the current knowledge?

Back to the Drawing Board

In this project, we want to attack the ATP+RL target from a new angle. Rather than imme-
diately aiming at designing an (end-to-end trainable) agent with access to the complete state
(that could, in principle, solve the whole formula before the search even begins and would,
effectively, only use the prover as a verifier), we want to start as close as possible to the SotA
design and use RL as a research tool to further our understanding of proof search dynamics.

One possible setup, which is—at first sight—so glaringly impractical that it probably has
not been tried yet, is training an agent on a single problem only. Yes, with a complete state
description the agent can just memorize a proof (once it finds one, maybe after a long initial
search) and then just keep replaying it afterwards. However, there are at least two aspects
which make already this simple setup interesting.

First, in a typical proof search a complete state description very soon becomes intractably
large to be processed by the agent efficiently (we talk about thousands of clauses generated in
a few seconds) and thus cheaply computable abstractions have to come to rescue. Going back
to the SotA agent, we often find it happy with representing each clause by just two numbers,
its age and weight. Guiding towards a previously seen proof becomes an interesting challenge
for an agent when “partially blindfolded” by simple abstractions.

The second aspect is the inherent fragility of proof search, on which the author recently shed
light using randomization [16]. It turns out that even very small changes in a concrete run,
introduced at the level of “don’t care non-determinism” such as the exact order of literals in
a newly generated clause, can have a tremendous impact on how long it takes to find a proof.
Further investigation is needed to pinpoint what exactly causes so much chaos in our provers.4

In this project, we plan to undertake such investigation with the tools of RL, making use of
the randomization code from our previous work [16] to turn theorem proving into a stochastic
environment. This will create a second challenge for our agent, forcing it to seek robust strate-
gies. Ultimately, we would like the agent to be able to recognize situations that are particularly
unstable, so that it could respond particularly carefully. By examining the used features, we,
as prover developers, will then hopefully learn how to build more robust provers ourselves.

2There is, however, also a meta-point: Deepire’s guidance [15] does not depend on the conjecture in this
sense, yet the system achieves a comparable, if not better, performance to ENIGMA on Mizar [6].

3And letting the prover figure out which actions were actually useful for the success by trial and error.
4Although a major part is probably caused by the eager simplifications and their interactions with clause

selection (generating inferences on their own would stay nicely confluent), there is also the possibility that a
sudden selection of what we could call a “highly explosive clause” dramatically changes the content of the
weight-sorted queue, rendering the previously observed proof out of reach.
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[11] S. Schulz, S. Cruanes, and P. Vukmirović. Faster, higher, stronger: E 2.3. In Proc. of the
27th CADE, Natal, Brasil, number 11716 in LNAI, pp. 495–507. Springer, 2019.
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