Fast and Slow Enigmas and Parental Guidance

Zarathustra Goertzel, Karel Chvalovský, Jan Jakubův, Miroslav Olšák, and Josef Urban

> Czech Technical University in Prague University of Innsbruck, Austria

> > FROCOS 2021

E Prover (a Saturation-based ATP)

- Goal: Prove conjecture from premises.
- E has two sets of clauses:
 - *Processed* clauses P (initially empty)
 - Unprocessed clauses U (Negated Conjecture and Premises)
- Given Clause Loop:
 - Select 'given clause' g to add to P
 - Apply inference rules to g and all clauses in P
 - Process new clauses. Add non-trivial and non-redundant ones to U.
- Proof search succeeds when empty clause is inferred.
- Proof consists of some of the given clauses.

Given Clause Loop in E

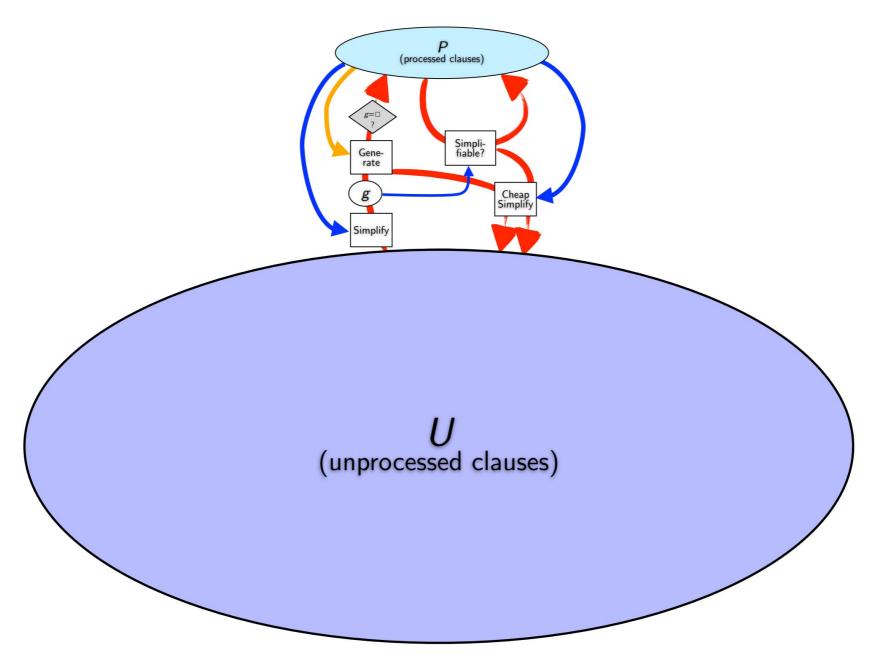


Image thanks to Stephan Schulz's presentation on E

E Strategies

- Clause Evaluation Functions (CEFs) consist of:
 - *Priority functions*: partition clauses into priority queues.
 - e.g., *ConstPrio, PreferUnit*
 - Weight functions: order clauses in queues based on a score.
 - e.g.: Clauseweight, FIFOWeight
- Weighted by frequency of use, for example:

-H'(5*Clauseweight(ConstPrio,1,1,1), 1*FIFOWeight(ConstPrio))'

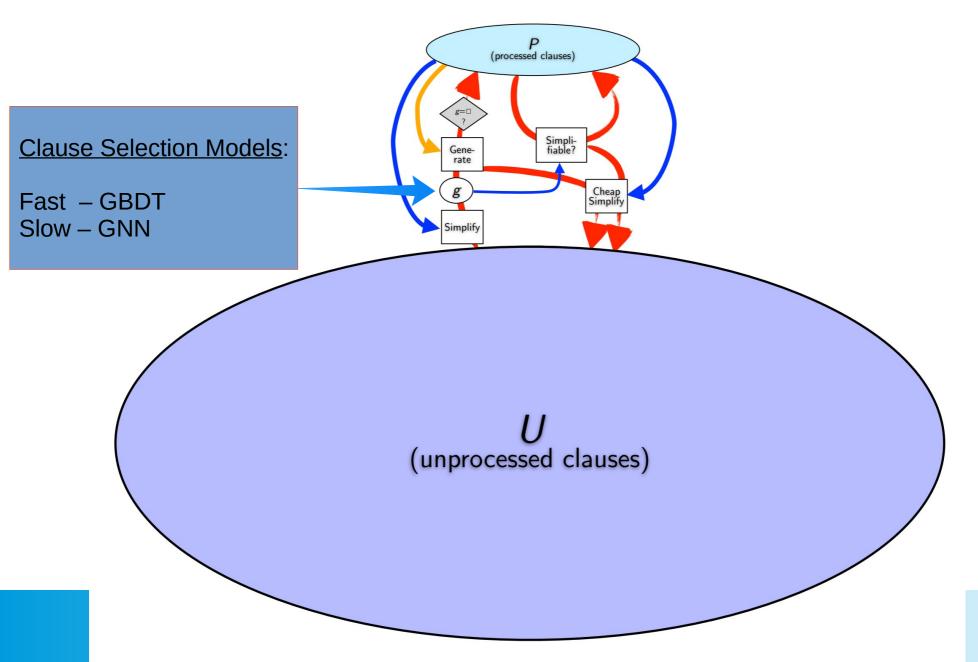
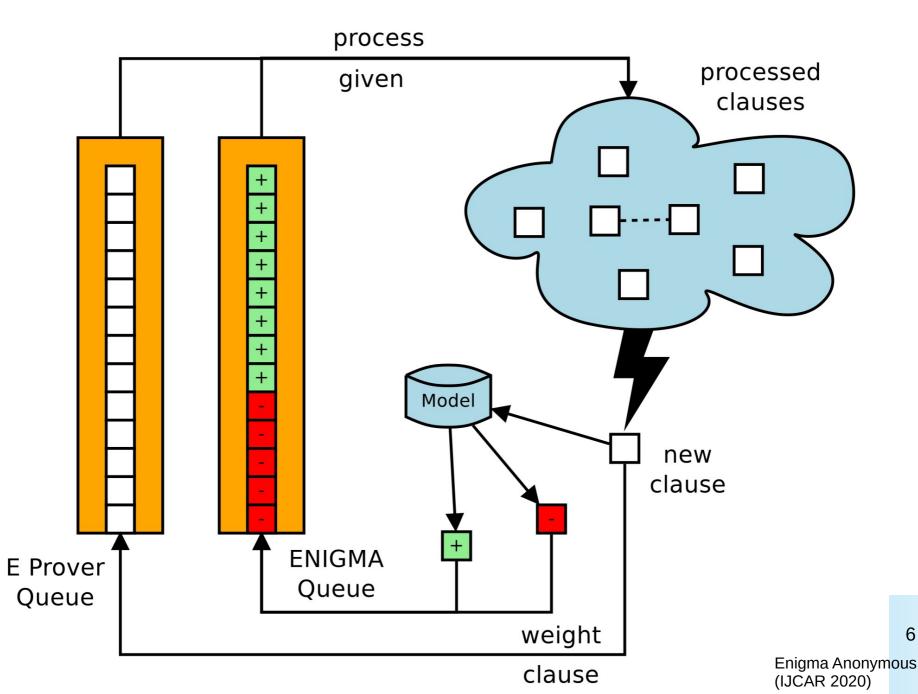
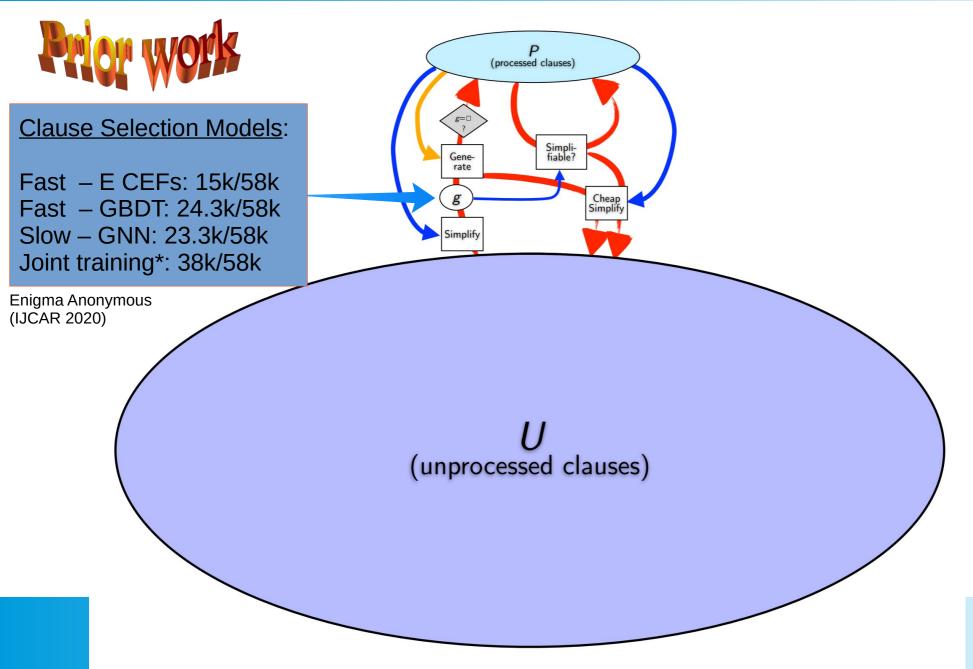
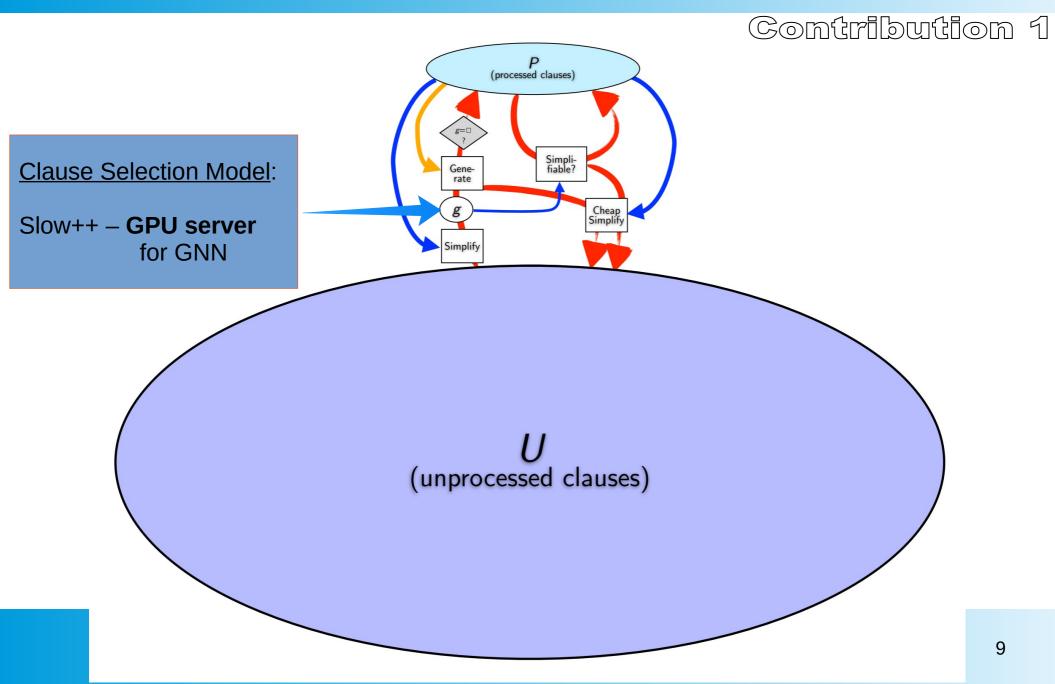
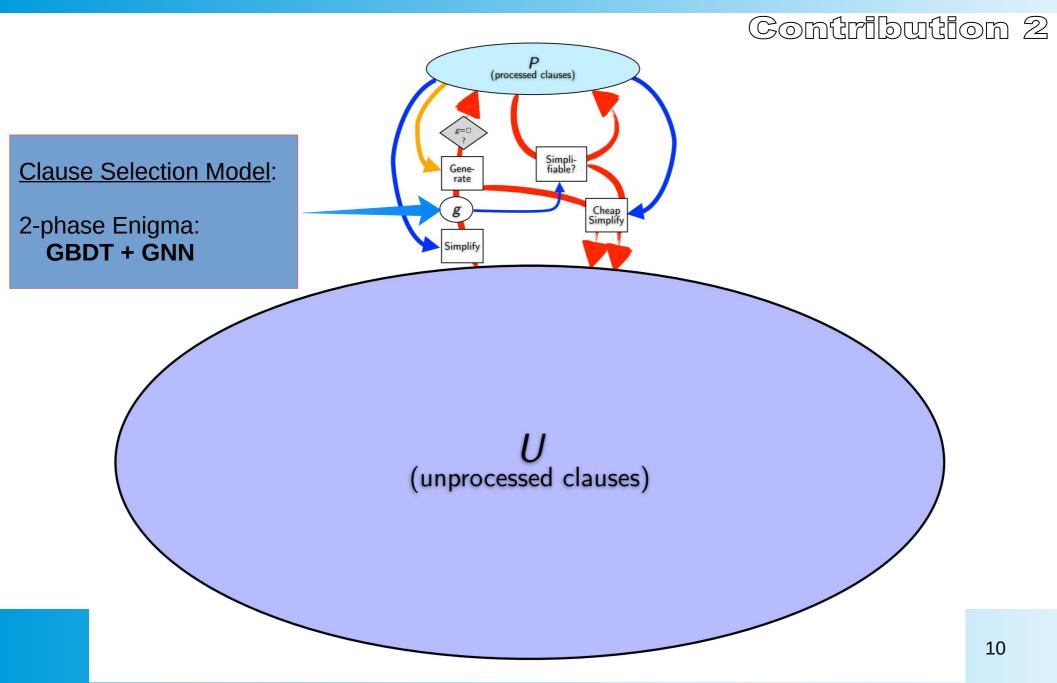
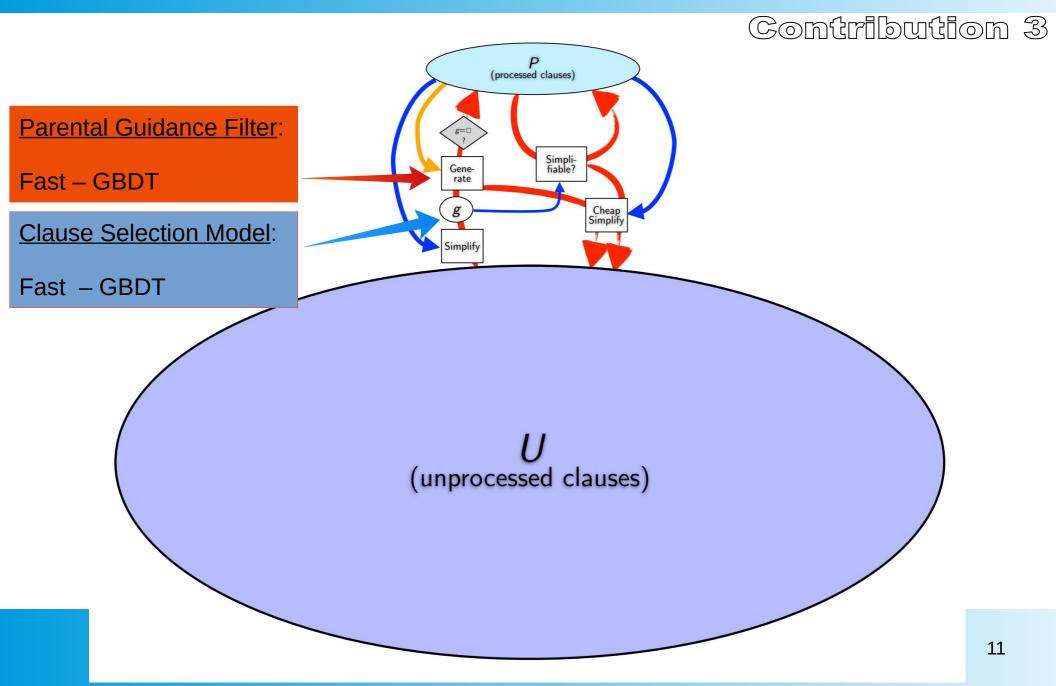



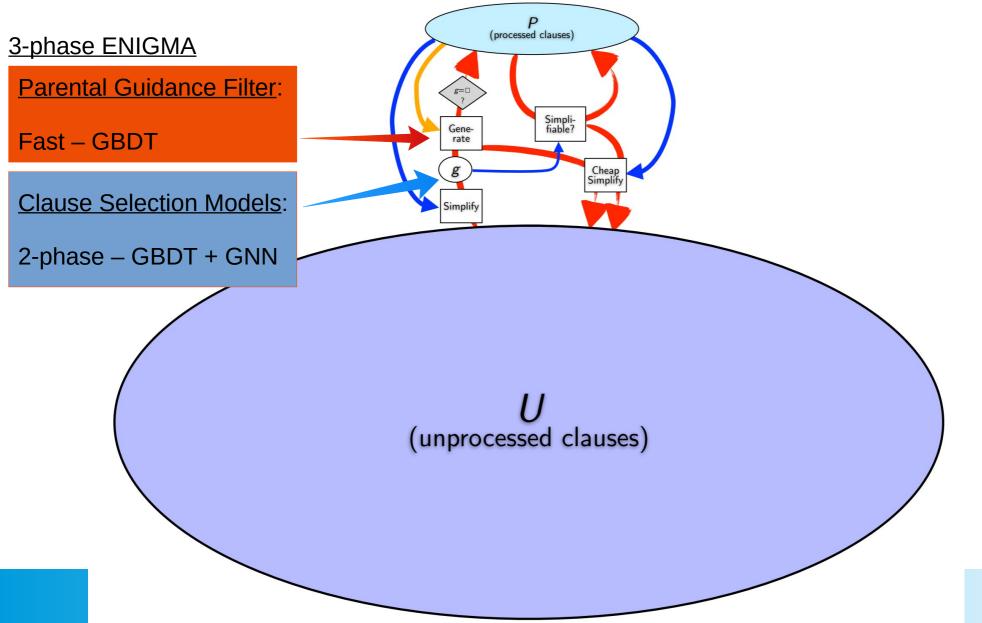
Image thanks to Stephan Schulz's presentation on E

6

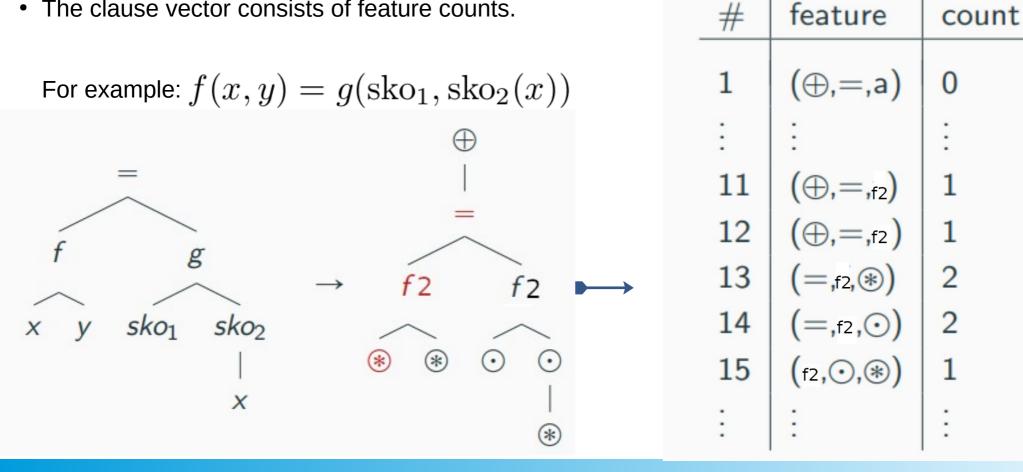
Mizar Experiment Setting

 Mizar Mathematical Library (MML) – 57880 problems 1148 articles

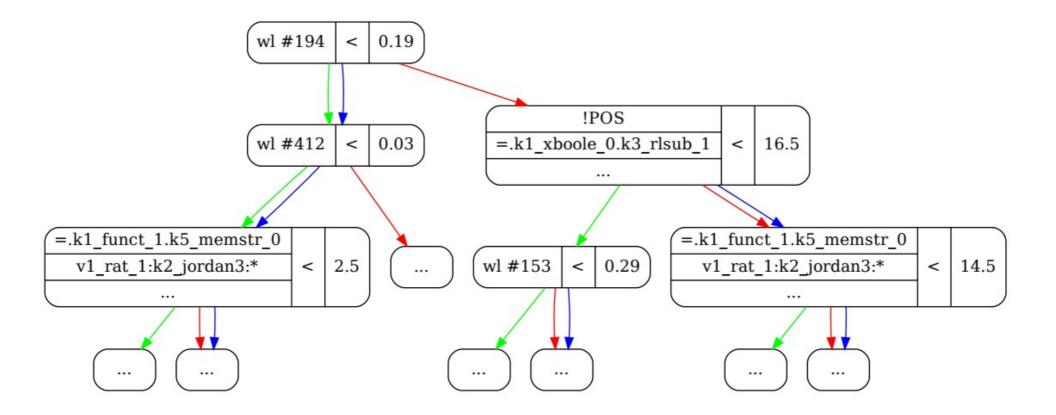






Image thanks to Stephan Schulz's presentation on E

Contribution 4



ENIGMA Anonymous

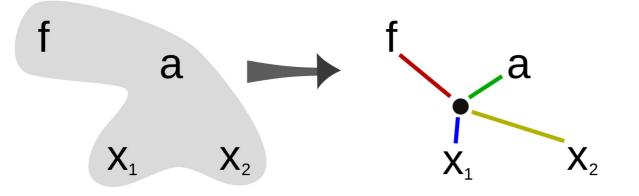

- Statistical machine learning for <u>clause selection</u>.
 - LightGBM (gradient boosted decision trees)
 - GNN (Graph Neural Network)
- Learns from given clauses:
 - Positive if in a proof
 - Negative otherwise
- Guides E via a weight function.
- Features: given clause + conjecture + theory

Featurization: clauses -> vectors

- Treat clauses as trees.
- Abstract vars and skolem symbols.
- Anonymize function and predicate symbols of arity *n* with "fn" or "pn".
- Hash features to reduce dimensionality.
- The clause vector consists of feature counts.

Gradient Boosted Decision Tree

*XGBoost tree with non-anonymized watchlist features


ENIGMA-GNN

- Graph Neural Network
- Directed hypergraph for a set of clauses
- Anonymized symbol names
- Nodes: clauses, functions and predicate symbols, unique (sub)terms, and literals
- Hyperedges:
 - 1) Clauses and literals
 - 2) Functions and predicates with subterms
- Message passing rounds \rightarrow clause embedding
- Prediction layer

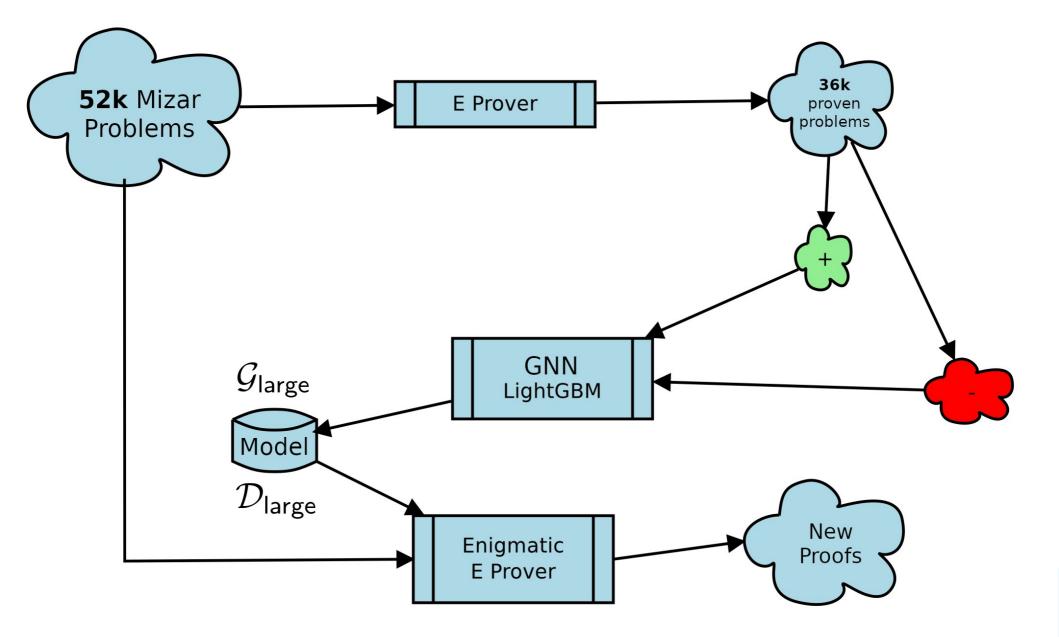
ENIGMA-GNN

• Application $a = f(x_1, x_2, ..., x_n)$ is represented by a set of 4-ary hyperedges $(f, a, x_1, x_2), (f, a, x_2, x_3), ..., (f, a, x_{n-1}, x_n).$

Hyperedges

GPU Server for Faster GNN Eval

- Persistent multi-threaded GPU server
- E clients send batches of clauses for evaluation
- GPU start-up costs are amortized
- More E clients can run in parallel (while waiting for the GPU).


- Use a GBDT model as a pre-filter for the GNN
- Clauses with high scores are given high weights
- Otherwise, the GNN scores the clauses

- Clause evaluation based on parent clause features.
- Score only *valid* pairs of parents with GBDT model.
- Freeze all clauses with scores below threshold.
- Unfreeze clauses if the unprocessed set empties.
- Run with $\mathcal{D}_{\mathsf{large}}$ to select from unfiltered clauses.
- Feature vector options:
 - $\mathcal{P}_{\mathsf{fuse}}$: merge parent vectors into one
 - $\mathcal{P}_{\mathsf{cat}}$: concatenate parent vectors

Mizar Experiment Settings

- 90-5-5% train-development-holdout split
 - Training: 52k problems
 - Small trains: 5792 problems
 - <u>Development: 2896 problems</u>
 - Small devel: 300 problems
 - Holdout: 2896 problems
- Already have 36k problems solved on training.
- Train baseline models: GDBT, \mathcal{D}_{large} , and GNN, \mathcal{G}_{large} (\mathcal{D}_{small}) (\mathcal{G}_{small})

Mizar Experiment Settings

Parental Guidance Training Data

- Need to judge all generated clauses!
- > What are responsible parents?

 \mathcal{P}^{proof}) Parents of proof clauses are *positive*.

 $\mathcal{P}^{\mathsf{given}}$) Parents of processed clauses are positive.

Parental Guidance Training Data

- Need to judge all generated clauses!
- > What are responsible parents?

 $\mathcal{P}^{\mathsf{proof}}$) Parents of proof clauses are positive.

 \mathcal{P}^{given}) Parents of processed clauses are *positive*.

- > Run \mathcal{D}_{large} or \mathcal{G}_{large} on 52k training set to create data
- > **Pos-neg-ratio**: with $\mathcal{P}^{\text{proof}}$ data, is 1:192!

GPU Server Speedup Results

- Compare in the context of parallelization with the CPUs fully saturated:
 - 70-fold parallelization for CPU-only
 - 160-fold parallelization for GPU-server

GPU Server Speedup Results

- Compare in the context of parallelization with the CPUs fully saturated:
 - 70-fold parallelization for CPU-only
 - 160-fold parallelization for GPU-server

set model method time solved				set model method time solved					
$\begin{array}{c} \mathrm{D} \mathcal{G}_{large} \\ \mathrm{D} \mathcal{G}_{large} \end{array}$					0	CPU CPU			
0					0			$1529 \ (+11.5\%)$	

GPU Server Speedup Results

- Compare in the context of parallelization with the CPUs fully saturated:
 - 70-fold parallelization for CPU-only
 - 160-fold parallelization for GPU-server

set model method	e solved	set model method time solved				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	60	1380	$\begin{array}{ll} \mathrm{H} & \mathcal{G}_{large} \\ \mathrm{H} & \mathcal{G}_{large} \\ \mathbf{H} & \mathcal{G}_{large} \end{array}$	CPU	60	

• Generates over 4x the clauses in the time limit!

- Parameter grid searches on size 300 devel set:
 - Filter threshold
 - GNN clause query size
 - GNN context size

Table 2. Final evaluation of the best combination of $\mathcal{D}_{\mathsf{small}}$ with $\mathcal{G}_{\mathsf{small}}$ on the whole development (D) and holdout (H) datasets of size 2896.

set	model	thresh	. time	e query	v contex	t solved
D	\mathcal{G}_{small}	-	30	256	768	1251
D	\mathcal{D}_{small}	-	30	-	-	1011
D	$\mathcal{D}_{small} + \mathcal{G}_{small}$	0.01	60	512	1024	$1381 \; (+10.4\%)$
D	$\mathcal{D}_{small}{+}\mathcal{G}_{small}$	0.03	60	512	1024	$1371\ (+9.6\%)$
D	$\mathcal{D}_{small}{+}\mathcal{G}_{small}$	0.03	30	512	1024	$1341 \ (+7.2\%)$
D	$\mathcal{D}_{small}{+}\mathcal{G}_{small}$	0.01	30	512	1024	$1339 \ (+7.0\%)$
Η	\mathcal{G}_{small}	-	30	256	768	1277
Η	\mathcal{D}_{small}	-	30	-	-	1002
\mathbf{H}	$\mathcal{D}_{small} {+} \mathcal{G}_{small}$	0.01	60	512	1024	$1392 \; (+9.0\%)$
Η	$\mathcal{D}_{small}{+}\mathcal{G}_{small}$	0.03	60	512	1024	1387~(+8.6%)
Η	$\mathcal{D}_{small}{+}\mathcal{G}_{small}$	0.01	30	512	1024	1361~(+6.6%)
Η	$\mathcal{D}_{small}{+}\mathcal{G}_{small}$	0.03	30	512	1024	$1353\ (+6.0\%)$

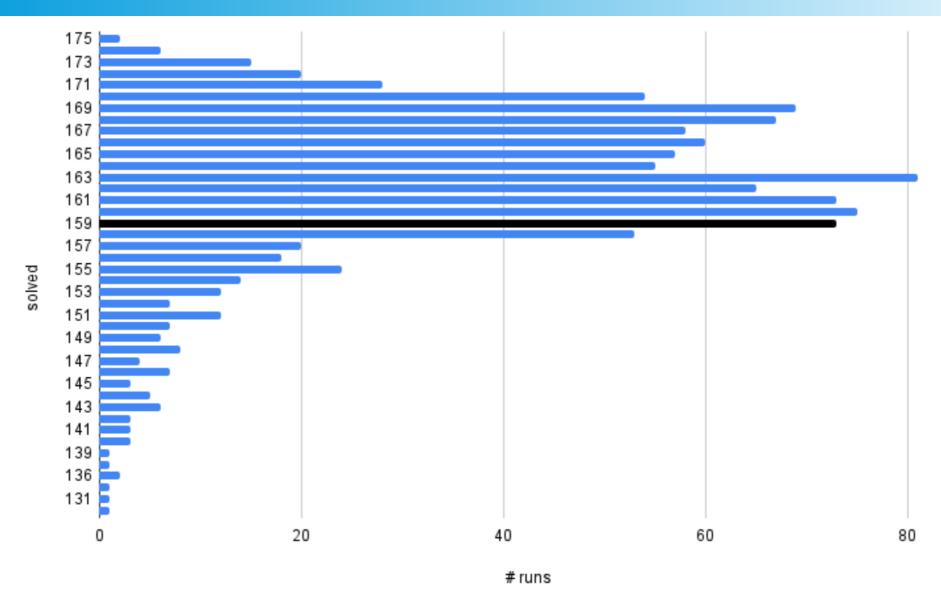
Table 3. Final evaluation of the best combination of $\mathcal{D}_{\mathsf{large}}$ and $\mathcal{G}_{\mathsf{small}}$ on the whole development (D) and holdout (H) datasets of size 2896.

set	model	thresh.	time	query	context	solved
D	\mathcal{G}_{small}	-	30	256	768	1251
D	\mathcal{D}_{large}	-	30	-	-	1397
\mathbf{D}	$\mathcal{D}_{large} + \mathcal{G}_{small}$	0.3	60	2048	768	1527 (+9.3%)
D	$\mathcal{D}_{large} {+} \mathcal{G}_{small}$	0.3	30	2048	768	$1496 \ (+7.1\%)$
Η	\mathcal{G}_{small}	-	30	256	768	1277
Η	\mathcal{D}_{large}	-	30	-	-	1390
\mathbf{H}	$\mathcal{D}_{large} {+} \mathcal{G}_{small}$	0.3	60	2048	768	1494 (+7.5%)
Η	$\mathcal{D}_{large} {+} \mathcal{G}_{small}$	0.3	30	2048	768	1467 (+5.5%)

Table 4. Final evaluation of the best combination of $\mathcal{D}_{\mathsf{large}}$ and $\mathcal{G}_{\mathsf{large}}$ on the whole development (D) and holdout (H) datasets of size 2896.

set	model	thresh.	time	query	context	solved
D	\mathcal{G}_{large}	-	30	256	768	1511
D	\mathcal{D}_{large}	-	30	-	-	1397
\mathbf{D}	$\mathcal{D}_{large} + \mathcal{G}_{large}$	0.1	60	1024	768	1648 (+9.1%)
D	$\mathcal{D}_{large} {+} \mathcal{G}_{large}$	0.1	30	1024	768	1615~(+6.9%)
Η	\mathcal{G}_{large}	-	30	256	768	1529
Η	\mathcal{D}_{large}	-	30	-	-	1390
\mathbf{H}	$\mathcal{D}_{large} + \mathcal{G}_{large}$	0.1	60	1024	768	1640 (+7.3%)
Η	$\mathcal{D}_{large}{+}\mathcal{G}_{large}$	0.1	30	1024	768	1602 (+4.8%)

- Parameter grid searches on size 300 devel set:
 - Filter threshold (0.005 to 0.5)
 - Pos-neg reduction ratio (1 to 16 or 'as is')
 - LightGBM params:
 - Num. trees
 - Num. leaves
 - Max depth
 - Parent vector feature form: $\mathcal{P}_{\mathsf{fuse}} \ vs \ \mathcal{P}_{\mathsf{cat}}$
 - Data curation method: $\mathcal{P}^{\mathsf{given}}$ vs $\mathcal{P}^{\mathsf{proof}}$


Table 5. The best threshold for each tested reduction ratio. The threshold of 0.03 was identical to 0.05 for all tested ratios with $\mathcal{P}_{fuse}^{given}$, whereas there are no ties among thresholds for $\mathcal{P}_{fuse}^{proof}$.

$\rho_{\rm fuse}^{\rm given}$		1	2	4	8	16	$\rho_{\rm fuse}^{\rm proof}$	_	1	2	4	8	16
threshold	0.05	0.05	0.05	0.05	0.05	0.05	threshold	l 0.005	0.2	0.2	0.2	0.2	0.2
solved	161	161	161	161	161	160	solved	111	164	163	165	162	164

• Best \mathcal{P}_{fuse} model solves 171

Table 6. The best threshold for each tested reduction ratio of \mathcal{P}_{cat} .

$ ho_{cat}$	-	1	2	4	8	16
threshold	$\left 0.5 \right $	0.1	0.05	0.3	0.1	0.05
threshold solved	117	168	170	168	173	169

Fig. 1. The number of settings (and runs) corresponding to each number of solutions for the \mathcal{P}_{cat} grid search. The black bar is 159, the number of problems solved by \mathcal{D}_{large} .

Table 8. Final 30s evaluation on small trains (T), development (D), and holdout (H) compared with $\mathcal{D}_{\mathsf{large}}$.

model	threshold	solved (T)	solved (D)	solved (H)
\mathcal{D}_{large}	-	3269	1397	1390
$\mathcal{P}_{fuse}^{given}{+}\mathcal{D}_{large}$	0.05	3302~(+1.0%)	1411~(+1.0%)	1417 (+1.9%)
$\mathcal{P}_{ extsf{fuse}}^{ extsf{given}} {+} \mathcal{D}_{ extsf{large}} \ \mathcal{P}_{ extsf{fuse}}^{ extsf{proof}} {+} \mathcal{D}_{ extsf{large}}$	0.1	3389~(+3.7%)	1489~(+6.6%)	1486~(+6.9%)
$\mathcal{P}_{cat} \! + \! \mathcal{D}_{large}$		3452 (+5.6%)	$1571 \ (+12.4\%)$	$1553 \; (+11.7\%)$

• The model has 100 trees of depth 60 with 8192 leaves.

- 2-phase ENIGMA with parental guidance.
- Train a \mathcal{P}_{cat} model on \mathcal{G}_{large} data.
- Parental guidance only with GNN:
 - **1621** problems on development
 - 1623 problems on holdout.

- 2-phase ENIGMA with parental guidance.
- Train a \mathcal{P}_{cat} model on \mathcal{G}_{large} data.
- Parental guidance only with GNN:
 - 1621 problems on development in 30s
 - 1623 problems on holdout.
- 3-phase:
 - **1631** problems on development.
 - 1632 problems on holdout (+17% over $\mathcal{D}_{\mathsf{large}}$).

Conclusion

- A GPU server renders the GNN more usable
- Combining fast and slow models works (+7%)
- Parent guided clause generation works (+11%)
- Combining all three models works even better (despite being 'slower') (+17%)

Conclusion

- A GPU server renders the GNN more usable
- Combining fast and slow models works (+7%)
- Parent guided clause generation works (+11%)
- Combining all three models works even better (despite being 'slower') (+17%)

• What other models can we integrate into E?