
Synthesis of Recursive Functions
from Sequences of Natural Numbers1

Thibault Gauthier

September 8, 2021

1Supported by the Czech Science Foundation project 20-06390Y
1 /14

Problem

Given a “finite” sequence of natural numbers,

A000217 : 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120

generate a “small” program that match the sequence?

f (x) = x × (x + 1)
2

2 /14

Motivations

1) Conjecturing:
n∑

x=0
x = x × (x + 1)

2 ?

2) A shorter explanation generalizes better.

3) A shorter explanation gives some understanding.

n∑
x=0

x is not prime for x > 2

3 /14

Language: understandable, efficient, generalizes

one variable: x

constants: 0, 1, 2

functions: +,−,×, /,mod ,
√

, power

conditional statements:
- cond(a, b, c) = if a = 0 then b else c
- loop(f , a, b) = f a (b)
- halt(f , a) = minimum i such that f i (a) = 0

4 /14

A issue with linear synthesis?

Same sub-expression repeatedly synthesized.

f (x)× (x × (x + 1))× g(x)

(x × (x + 1)) + h(x)

5 /14

Factorized bottom-up synthesis

target T : [0, 1, 3, 6, 10, 15, . . .]

size 1: x , 0, 1, 2

size 2:
√

x ,
√

0,
√

1,
√

2

size 3: x + x , x + 1, 2× x , . . .

size 4: loop(λx . x , 1, 2),
√

x + x , . . .

solution: program f such as [f (0), f (1), . . . , f (15)] = T

random fixed width w ∈ {4, 8, 16, 32} for each search:
select w programs at each size.

6 /14

Selecting programs for a target

target: [0, 1, 3, 6, 10, 15, . . .]

sub-program: x + 1 ≡ [1, 2, 3, 4, 5, 6 . . .]

[1, 2, 3, 4, 5, 6 . . .] useful for [0, 1, 3, 6, 10, 15, . . .]?

Euclidean distance is not good

because [2, 14, 3, . . .] is useful for [22, 214, 23, . . .].

7 /14

Train a classifier from solutions

Let P be a minimal solution and Ppos a subprogram of P.

positive example: ([P], [Ppos])

Let Pneg be a generated program with the same size as Ppos which
is not a subprogram of P.

negative example: ([P], [Pneg])

8 /14

OEIS sequences and restrictions

1) At least 16 elements.

2) First 16 elements between 0 and 263 − 1.

3) First 8 elements different form every other OEIS sequence.

About 350 000 sequences become about 200 000 targets.

9 /14

Reinforcement learning

0 5 10 15 20 25 30 35 40
0.1

0.5

1

·104

Figure: Number y of training problems solved after generation x

10 /14

Solutions

Picked at random: A079273
Octo numbers

1, 10, 29, 58, 97, 146, 205, 274, 353, 442, . . .

(x × x) + (1 + (x + x))2

Smallest with a nested loop: A125833
Numbers whose base 5 representation is 333.......3

0, 3, 18, 93, 468, 2343, 11718, 58593, 292968, . . .

Def: f (x) = 1 + (x + x), g(x) = x + f 2(x)

gx (0)

11 /14

Solutions

Largest: A273848
Number of active (ON,black) cells at stage 2n − 1 of the
two-dimensional cellular automaton defined by ”Rule 969”, based
on the 5-celled von Neumann neighborhood.

1, 4, 45, 225, 961, 3969, 16129, 65025, 261121, . . .

Def: f (x) = x + (1 + x)

(if x/2 = 0 then 2x else if
√

x + 1/2 = 0 then 3x else f x (1))

×

(if x/2 = 0 then 2x else if
√

x + 1/2 = 0 then f (x) else f x (1))

12 /14

Conclusion

Factorized bottom-up program synthesis

Semantic quotient + semantic filtering (semantic = sequences)

Interesting results (requires more learning)

13 /14

Future work

More extensive experiments:
- mix syntactic and semantic features
- large integers, real numbers, multiple variables, lists
- backward reasoning, recursion, techniques from ILP

Apply synthesis to theorem proving:
- term synthesis, tactic synthesis, cut introduction.

Look for applications beyond mathematics.

14 /14

