Synthesis of Recursive Functions from Sequences of Natural Numbers ${ }^{1}$

Thibault Gauthier

September 8, 2021
${ }^{1}$ Supported by the Czech Science Foundation project 20-06390Y

Problem

Given a "finite" sequence of natural numbers,
A000217: $0,1,3,6,10,15,21,28,36,45,55,66,78,91,105,120$
generate a "small" program that match the sequence?

$$
f(x)=\frac{x \times(x+1)}{2}
$$

Motivations

1) Conjecturing:

$$
\sum_{x=0}^{n} x=\frac{x \times(x+1)}{2} ?
$$

2) A shorter explanation generalizes better.
3) A shorter explanation gives some understanding.

$$
\sum_{x=0}^{n} x \text { is not prime for } x>2
$$

Language: understandable, efficient, generalizes

one variable: x
constants: $0,1,2$
functions: $+,-, \times, /, \bmod , \sqrt{ }$, power
conditional statements:

- cond $(a, b, c)=$ if $a=0$ then b else c
$-\operatorname{loop}(f, a, b)=f^{a}(b)$
- halt $(f, a)=$ minimum i such that $f^{i}(a)=0$

A issue with linear synthesis?

Same sub-expression repeatedly synthesized.

$$
\begin{gathered}
f(x) \times(x \times(x+1)) \times g(x) \\
(x \times(x+1))+h(x)
\end{gathered}
$$

Factorized bottom-up synthesis

$\operatorname{target} T:[0,1,3,6,10,15, \ldots]$
size 1: $x, 0,1,2$
size 2: $\sqrt{x}, \sqrt{0}, \sqrt{1}, \sqrt{2}$
size 3: $x+x, x+1,2 \times x, \ldots$
size 4: $\operatorname{loop}(\lambda x . x, 1,2), \sqrt{x+x}, \ldots$
solution: program f such as $[f(0), f(1), \ldots, f(15)]=T$
random fixed width $w \in\{4,8,16,32\}$ for each search:
select w programs at each size.

Selecting programs for a target

target: $[0,1,3,6,10,15, \ldots]$
sub-program: $x+1 \equiv[1,2,3,4,5,6 \ldots]$
$[1,2,3,4,5,6 \ldots]$ useful for $[0,1,3,6,10,15, \ldots]$?

Euclidean distance is not good
because $[2,14,3, \ldots]$ is useful for $\left[2^{2}, 2^{14}, 2^{3}, \ldots\right]$.

Train a classifier from solutions

Let P be a minimal solution and $P_{p o s}$ a subprogram of P.
positive example: $\left([P],\left[P_{p o s}\right]\right)$

Let $P_{\text {neg }}$ be a generated program with the same size as $P_{\text {pos }}$ which is not a subprogram of P.
negative example: $\left([P],\left[P_{\text {neg }}\right]\right)$

OEIS sequences and restrictions

1) At least 16 elements.
2) First 16 elements between 0 and $2^{63}-1$.
3) First 8 elements different form every other OEIS sequence.

About 350000 sequences become about 200000 targets.

Reinforcement learning

Figure: Number y of training problems solved after generation x

Solutions

Picked at random: A079273
Octo numbers

$$
\begin{gathered}
1,10,29,58,97,146,205,274,353,442, \ldots \\
(x \times x)+(1+(x+x))^{2}
\end{gathered}
$$

Smallest with a nested loop: A125833
Numbers whose base 5 representation is $333 \ldots3$

$$
0,3,18,93,468,2343,11718,58593,292968, \ldots
$$

Def: $f(x)=1+(x+x), g(x)=x+f^{2}(x)$

$$
g^{\times}(0)
$$

Solutions

Largest: A273848
Number of active (ON,black) cells at stage $2^{n}-1$ of the two-dimensional cellular automaton defined by "Rule 969", based on the 5 -celled von Neumann neighborhood.

$$
1,4,45,225,961,3969,16129,65025,261121, \ldots
$$

Def: $f(x)=x+(1+x)$
(if $x / 2=0$ then 2^{x} else if $\sqrt{x+1} / 2=0$ then 3^{x} else $f^{x}(1)$)

(if $x / 2=0$ then 2^{x} else if $\sqrt{x+1} / 2=0$ then $f(x)$ else $f^{x}(1)$)

Conclusion

Factorized bottom-up program synthesis

Semantic quotient + semantic filtering (semantic $=$ sequences)
Interesting results (requires more learning)

Future work

More extensive experiments:

- mix syntactic and semantic features
- large integers, real numbers, multiple variables, lists
- backward reasoning, recursion, techniques from ILP

Apply synthesis to theorem proving:

- term synthesis, tactic synthesis, cut introduction.

Look for applications beyond mathematics.

