NaturalProofs

Sean Welleck

Joint work with Gary Liu, Ronan Le Bras, Hanna Hajishirzi, Yejin Choi, Kyunghyun Cho

Overview

- Motivation: "Mathematical assistant"
- Data: Multi-domain NaturalProofs
- Tasks: Reference retrieval & generation
- Future directions

Mathematical assistant

- Proof-based mathematics is difficult to learn and self-study
 - Current approach requires human experts
- An interactive system capable of helping with arbitrary mathematics would require:
 - Mathematical reasoning ability
 - Natural language ability

If every ascending chain of primary ideals in *R* stabilizes, is *R* a Noetherian ring?

Asked 7 years, 5 months ago Active 7 years, 4 months ago Viewed 1k times

A commutative ring *R* is called Noetherian if every ascending chain of ideals in *R* stabilizes, that is,

15

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

implies the existence of $n \in \mathbb{N}$ such that $I_n = I_{n+1} = I_{n+2} = \cdots$.

My question is the following:

0

Does there exist a non-Noetherian ring R such that every ascending chain of primary ideals stabilizes?

Remark. Note that there exists non-Noetherian ring R such that every ascending chain of *prime* ideals stabilizes. This happens exactly when R is non-Noetherian and $\operatorname{Spec}(R)$ is Noetherian topological space. See here and Exercise 12 of Chapter 6 in *Introduction to Commutative Algebra* by Atiyah & Macdonald.

abstract-algebra commutative-algebra ideals

Featured on Meta

Feature Preview: Table S

MAINTENANCE WARNI downtime early morning UTC...

Linked

A non-noetherian ring w spectrum

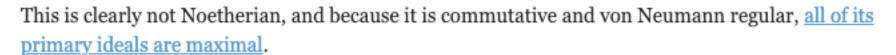
Related

Ascending chain "stabil infinitely many times

3 Noetherian module in

Yes, there do exist rings which aren't Noetherian but which do have ACC on primary ideals. An example is $\prod_{i\in\mathbb{N}} F_i$ where the F_i are fields.

8



This is even more dramatic than the ACC really, since you cannot even have a chain of two primary ideals:)

and the second second

Informal — formal spectrum

• The mathematical assistant can be approached from a variety of angles

Informal

Informal — formal spectrum

The mathematical assistant can be approached from a variety of angles

Textbook

6.2. The Intermediate-Value Theorem

The intermediate-value theorem states that if f is a continuous function on the closed interval [a,b] and if d is between f(a) and f(b), then there is a number c between a and b such that f(c) = d. The power of the theorem lies in the fact that it provides a way of knowing about the existence of something without requiring that it be explicitly found.

As an example, let us show that $-2x^5 + 4x = 1$ has a solution in the interval (0, 1). Consider $f(x) = -2x^5 + 4x$, and take two "pot-shots": f(0)is too small, and f(1) is too large. Therefore, by the intermediate-value theorem, there is a number in (0, 1) that is just right.

Proofwiki

Let $f: S \to \mathbb{R}$ be a real function on some subset S of \mathbb{R} . Let $I \subseteq S$ be a real interval.

Let $f: I \to \mathbb{R}$ be continuous on I.

Then f is a Darboux function.

Let $a, b \in I$.

Theorem

Let $k \in \mathbb{R}$ lie between f(a) and f(b).

That is, either:

 $f\left(a\right) < k < f\left(b\right)$

 $f\left(b\right) < k < f\left(a\right)$

Then $\exists c \in (a . . b)$ such that f(c) = k.

Colada [Hales 2020]

Here is a sample text, as viewed by the mathematician reading the document.

Definition 1 (greatest element). We say that y is a greatest element in R iff for all $x, x \leq y$.

Let x < y stand for $x \le y$ and $x \ne y$.

The CNL is generated from the source file by stripping formatting.

greatestelement in R iff for all x , $x \le y$.

Let x < y stand for $x \le y$ and $x \le y$.

Mathlib/Lean

```
^\prime-- **Intermediate Value Theorem** for continuous functions on lpha
Definition Label_greatest_element . We say that
                                                        `f a ≤ t ≤ f b`.-/
                                                        lemma intermediate_value_Icc {a b : \alpha} (hab : a \leq b) {f : \alpha \rightarrow \delta}
                                                         Icc (f a) (f b) \subseteq f '' (Icc a b) :=
                                                       is_preconnected_Icc.intermediate_value (left_mem_Icc.2 hab) (right)
```


Informal — formal spectrum

- The mathematical assistant can be approached from a variety of angles
- We consider the informal side here
 - Progress on/between any point of the spectrum is worthwhile

 $f\left(b\right) < k < f\left(a\right)$

Then $\exists c \in (a . . . b)$ such that f(c) = k

Formal **Informal** Proofwiki Colada Theorem [Hales 2020] Let $f: S \to \mathbb{R}$ be a real function on some subset S of \mathbb{R} 6.2. The Intermediate-Value Theorem Let $I \subseteq S$ be a real interval. Here is a sample text, as viewed by the mathematician reading the document. Let $f: I \to \mathbb{R}$ be continuous on I. The intermediate-value theorem states that if f is a continuous function on **Definition 1** (greatest element). We say that y is a greatest element in R iff for all $x, x \leq y$. the closed interval [a,b] and if d is between f(a) and f(b), then there is a Then f is a Darboux function. number c between a and b such that f(c) = d. The power of the theorem Let x < y stand for $x \le y$ and $x \ne y$. lies in the fact that it provides a way of knowing about the existence of Mathlib/Lean something without requiring that it be explicitly found. The CNL is generated from the source file by stripping formatting. As an example, let us show that $-2x^5 + 4x = 1$ has a solution in the Let $a, b \in I$. interval (0, 1). Consider $f(x) = -2x^5 + 4x$, and take two "pot-shots": f(0) $^\prime--$ **Intermediate Value Theorem** for continuous functions on lphais too small, and f(1) is too large. Therefore, by the intermediate-value Definition Label_greatest_element . We say that `f a ≤ t ≤ f b`.-/ theorem, there is a number in (0, 1) that is just right. Let $k \in \mathbb{R}$ lie between f(a) and f(b). greatestelement in R iff for all x , x \leq . lemma intermediate_value_Icc {a b : α } (hab : a \leq b) {f : $\alpha \rightarrow \delta$ } Icc (f a) (f b) \subseteq f '' (Icc a b) := $f\left(a\right) < k < f\left(b\right)$ Let x < y stand for $x \le y$ and $x \le y$.

is_preconnected_Icc.intermediate_value (left_mem_Icc.2 hab) (right)

Textbook

Large-scale NLP methods for mathematics

- Large-scale language models (e.g. BERT [Devlin et al 2018], GPT [Radford et al 2019], T5 [Raffel et al 2019], BART [Lewis et al 2020])
 - Formal mathematics: e.g. GPT-f [Polu & Sutskever 2020], Skip-Tree [Rabe et al 2020], PACT [Han et al 2021]
 - Auto-formalization: e.g. [Kaliszyk et al 2014], [Wang et al 2020], [Szegedy 2020]
- Neural Retrieval
 - Dual encoder [Noguiera & Cho 2019], Dense Passage Retrieval [Karpukhin et al 2020]

• Motivation: "Mathematical assistant"

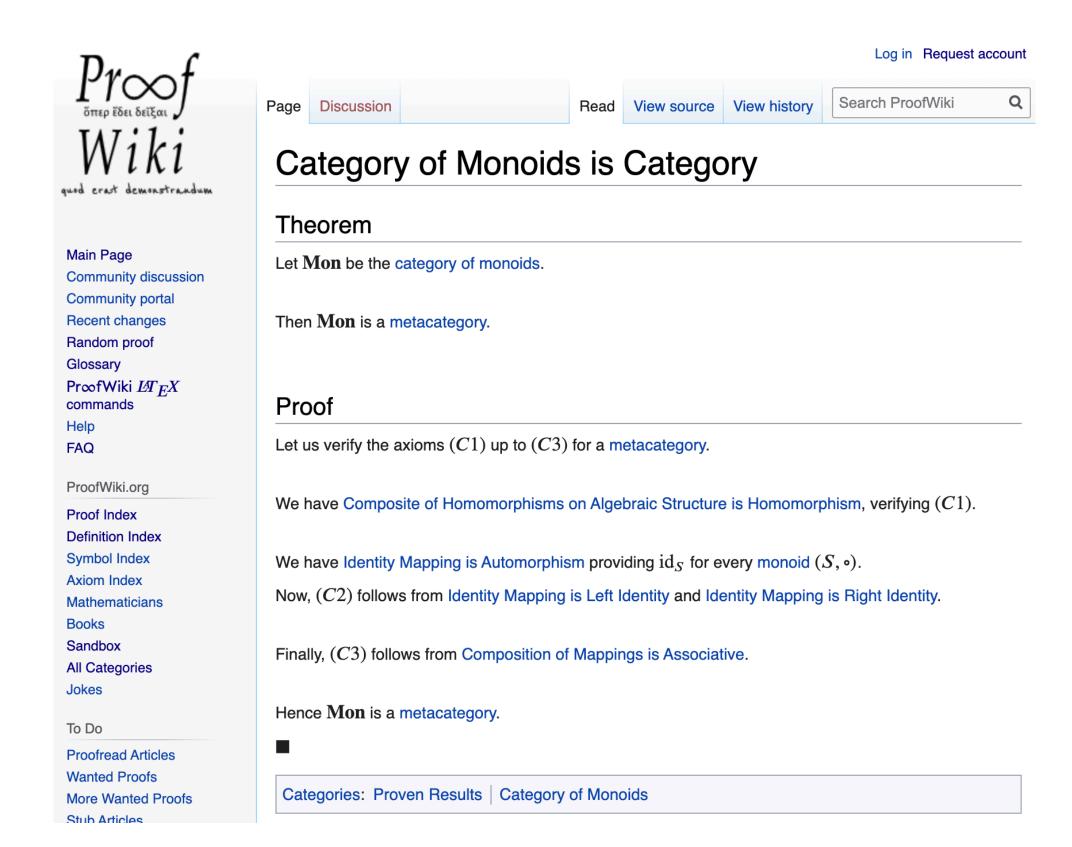
• Data: Multi-domain NaturalProofs

• Tasks: Reference retrieval & generation

• Future directions

Data sources

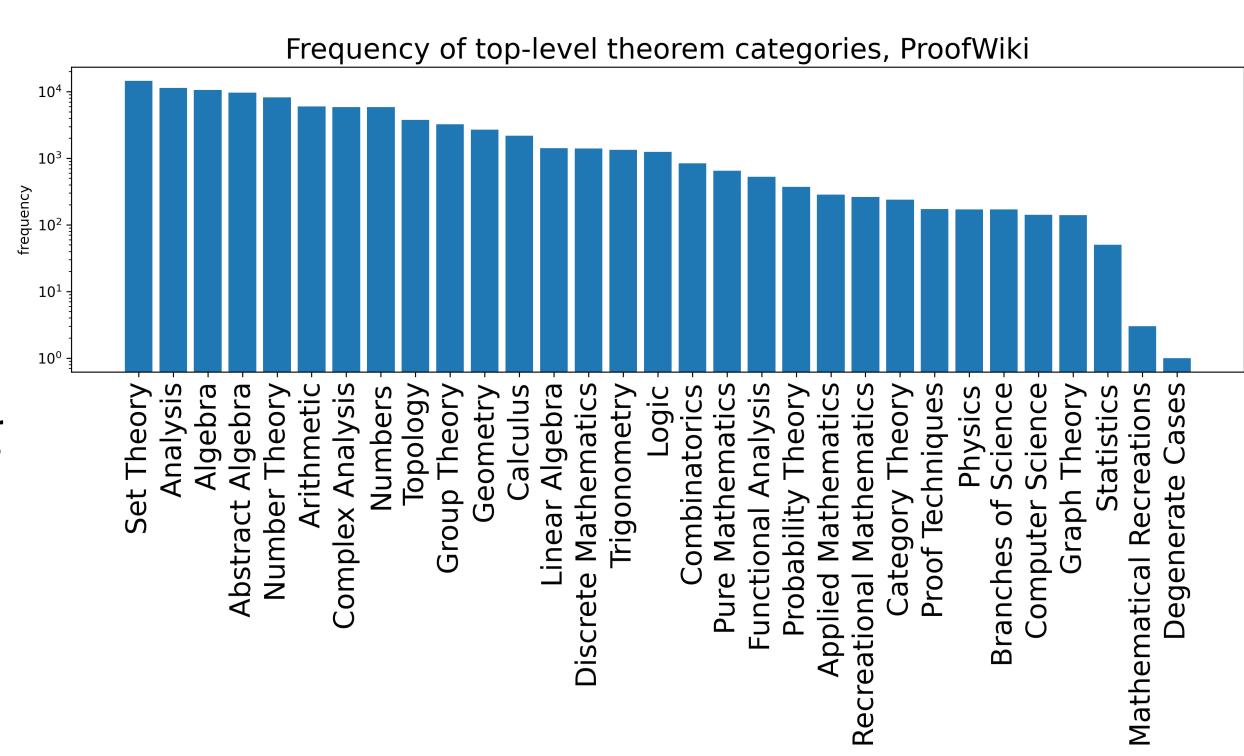
- Broad-coverage mathematics
 - ▶ **Proofwiki**: 20k theorems, 12.5k definitions



https://proofwiki.org/

Data sources

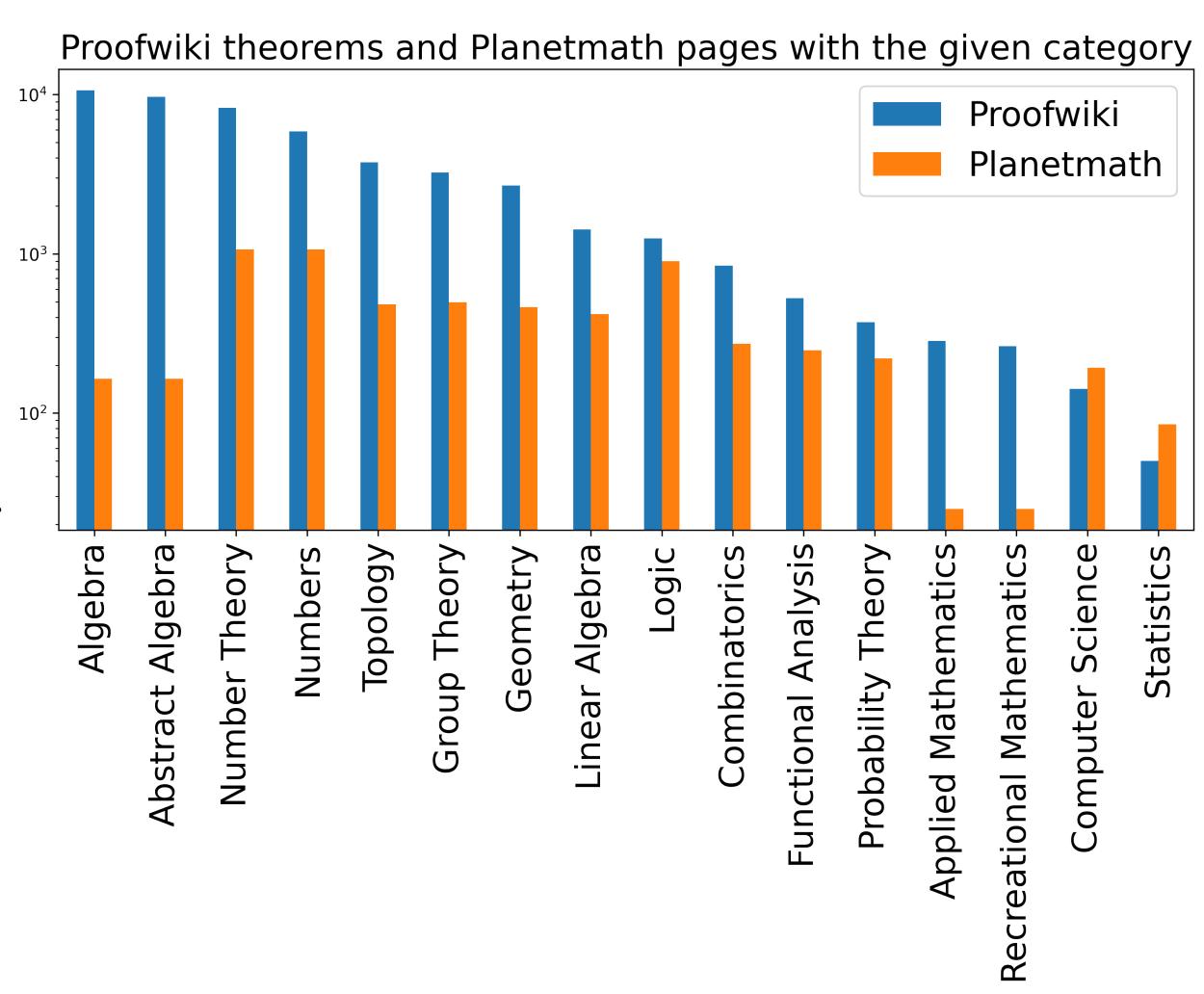
- Broad-coverage mathematics
 - ▶ **Proofwiki**: 20k theorems, 12.5k definitions
 - Large intersection with undergraduate curricula
 - Real-world users can benefit from tooling



https://proofwiki.org/

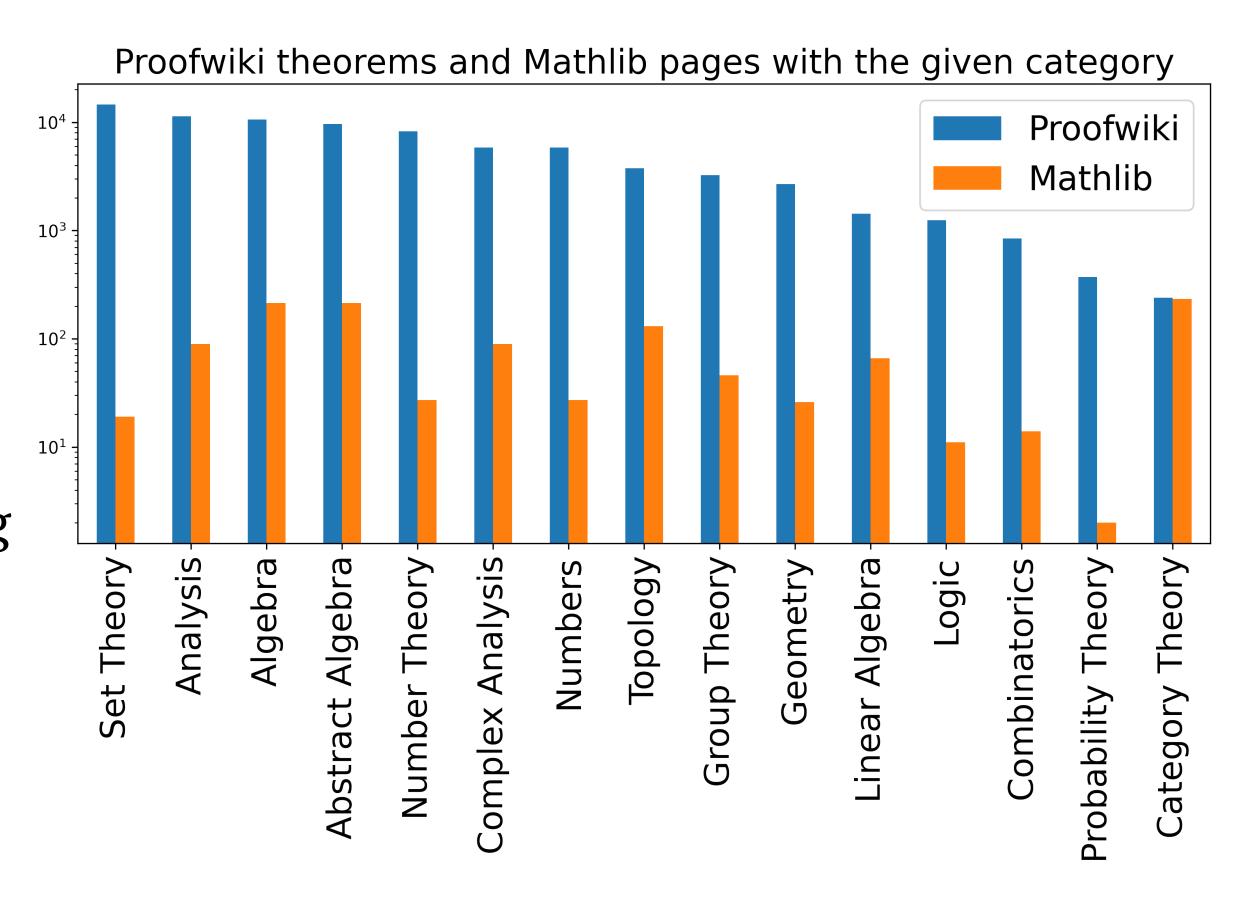
Data sources

- Broad-coverage mathematics
 - ▶ **Proofwiki**: 20k theorems, 12.5k definitions
 - Large intersection with undergraduate curricula
 - Real-world users can benefit from tooling
 - Overlap: *PlanetMath*



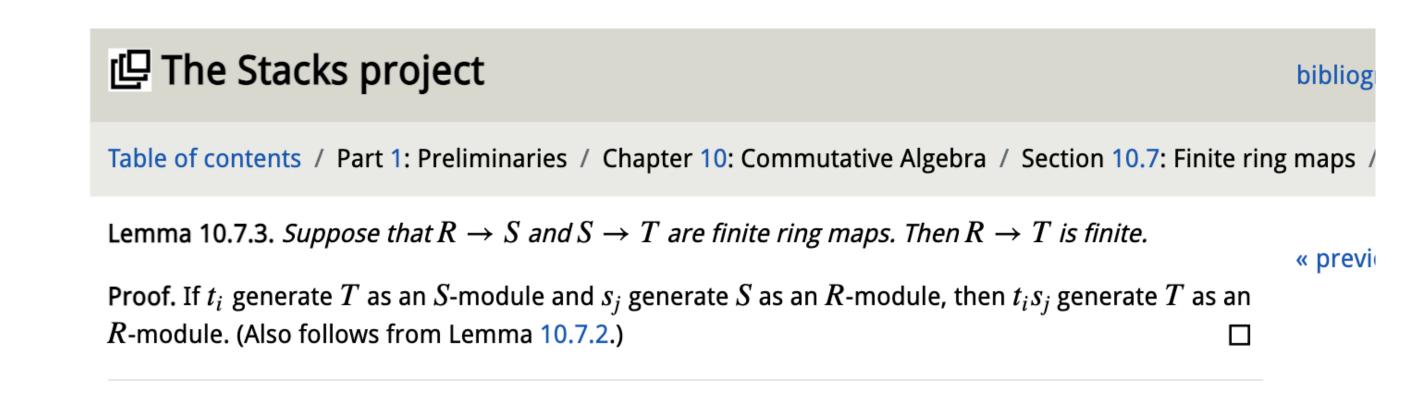
Data sources

- Broad-coverage mathematics
 - ▶ **Proofwiki**: 20k theorems, 12.5k definitions
 - Large intersection with undergraduate curricula
 - Real-world users can benefit from tooling
 - Overlap: *PlanetMath*
 - Overlap: *Mathlib* (Lean)



Data sources

- Broad-coverage
- Deep-coverage
 - Stacks: 12.5k theorems,1.7k definitions



https://stacks.math.columbia.edu/

Data sources

- Broad-coverage
- Deep-coverage
 - Stacks: 12.5k theorems,1.7k definitions
 - Research-level

Source	Stacks
Theorem	Lemma 9.7
	Let S be a scheme. Let $f: X \to S$ be locally of finite type with X quasi-compact. Then
	$\operatorname{size}(X) \leq \operatorname{size}(S)$.
Proof	We can find a finite affine open covering $X = \bigcup_{i=1,n} U_i$ such that each U_i maps into an affine
	open S_i of S . Thus by Lemma 9.5 we reduce to the case where both S and X are affine. In this
	case by Lemma 9.4 we see that it suffices to show
	$ A[x_1, \dots, x_n] \le \max\{\aleph_0, A \}.$
	We omit the proof of this inequality.

- Large-scale, density can benefit from search

Data sources

- Broad-coverage
- Deep-coverage
 - Stacks: 12.5k theorems,1.7k definitions
 - Research-level
 - Large-scale, density can benefit from search
 - Overlap: Subset formalized in Lean
 - Overlap: *Arxiv*

Table of contents / Part 2: Schemes / Chapter 26: Schemes / Section 26.2: Locally ringed spaces (cite)

Definition 26.2.1. Locally ringed spaces.

- ıq »
- (1) A *locally ringed space* (X, \mathcal{O}_X) is a pair consisting of a topological space X and a sheaf of rings \mathcal{O}_X all of whose stalks are local rings.
- (2) Given a locally ringed space (X, \mathcal{O}_X) we say that $\mathcal{O}_{X,x}$ is the *local ring of* X at x. We denote $\mathfrak{m}_{X,x}$ or simply \mathfrak{m}_x the maximal ideal of $\mathcal{O}_{X,x}$. Moreover, the *residue field of* X at x is the residue field $\kappa(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x$.
- (3) A morphism of locally ringed spaces $(f, f^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces such that for all $x \in X$ the induced ring map $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is a local ring map.

Ramon Fernández Mir https://github.com/ramonfmir/lean-scheme

Data sources

- Broad-coverage
- Deep-coverage
- Low-resource
 - Textbooks: Real Analysis,Number Theory
 - Education applications
 - ML challenge: OOD generalization
 298 / 69 theorems
 86 / 37 defintions

Source	Textbook: Real Analysis
Theorem	Suppose that f is continuous on the closed interval $[a,b]$ and differentiable on the
	open interval (a, b) , and $f(a) = f(b)$.
	Then $f'(c) = 0$ for some c in the open interval (a, b) .
Proof	Since f is continuous on $[a, b]$, f attains a maximum and a minimum value on $[a, b]$ (Theorem
	2.2.9). If these two extreme values are the same, then f is constant on (a, b) , so $f'(x) = 0$ for
	$\overline{\text{all }x}$ in (a,b) . If the extreme values differ, then at least one must be attained at some point c in
	the open interval (a, b) , and $f'(c) = 0$, by Theorem 2.3.7.
Source	Textbook: Number Theory
Theoren	n Units

modulo n.

to b modulo n.

Proof

If gcd(a, n) = 1, then the equation $ax \equiv b \pmod{n}$ has a solution, and that solution is unique

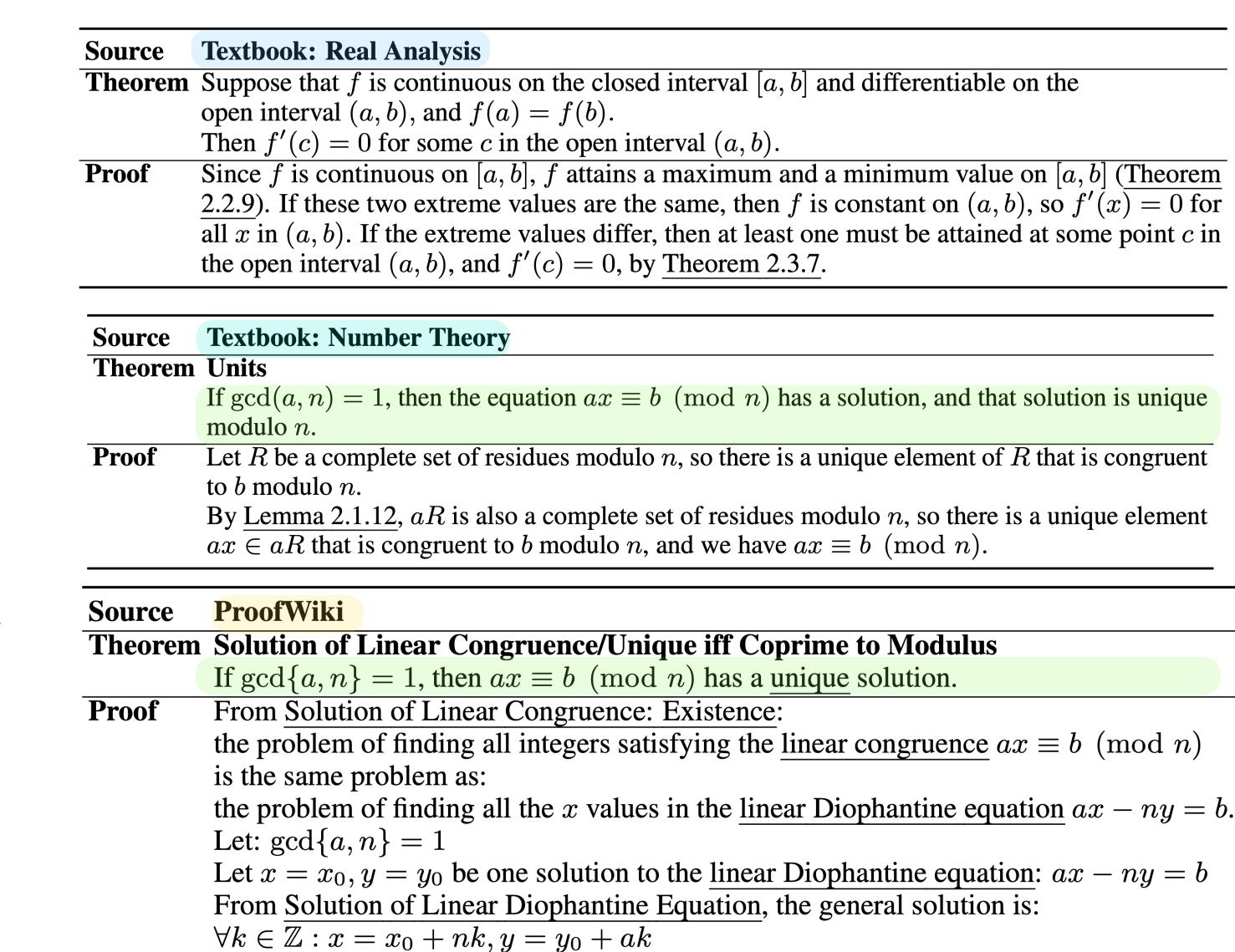
Let R be a complete set of residues modulo n, so there is a unique element of R that is congruent

By Lemma 2.1.12, aR is also a complete set of residues modulo n, so there is a unique element

 $ax \in aR$ that is congruent to b modulo n, and we have $ax \equiv b \pmod{n}$.

Data sources

- Broad-coverage
- Deep-coverage
- Low-resource
 - ► **Textbooks**: Real Analysis, Number Theory
 - Education applications
 - ML challenge: OOD generalization 298 / 69 theorems 86 / 37 defintions
 - Overlap: Proofwiki



But: $\forall k \in \mathbb{Z} : x_0 + nk \equiv x_0 \pmod{n}$

Hence $x \equiv x_0 \pmod{n}$ is the only solution of $ax \equiv b \pmod{n}$.

Schema

```
Dataset: {
  'dataset': {
    'theorems': [Statement],
    'definitions': [Statement],
    'others': [Statement],
Statement: {
  'id': int,
  'type': string,
  'label': string,
  'categories': [string],
  'toplevel_categories': [string], // ProofWiki only
  'recursive_categories': [string], // ProofWiki only
  'title': string,
  'contents': [string],
  'refs': [string],
  'ref_ids': [int],
  'proofs': [Proof], // for theorems only
Proof: {
   'contents': [string],
   'refs': [string],
   'ref_ids': [int],
```


NaturalProofs | AITP 2021 Sean Welleck

Schema - Example

Category of Monoids is Category

Theorem

Let Mon be the category of monoids.

Then Mon is a metacategory.

```
"id": 5480,
"type": "theorem",
"label": "Category of Monoids is Category",
"title": "Category of Monoids is Category",
"contents": [
  "Let $\\mathbf{Mon}$ be the [[Definition:Category of Monoids|category of monoids]].",
  "Then $\\mathbf{Mon}$ is a [[Definition:Metacategory|metacategory]]."
"refs": [
  "Definition: Category of Monoids",
  "Definition: Metacategory"
"ref_ids": [ 22919, 21454 ],
"categories": [ "Category of Monoids" ],
"toplevel_categories": [ "Algebra", "Set Theory", "Abstract Algebra", "Category Theory" ],
"recursive_categories": [
  "Category Theory",
  "Algebra",
  "Abstract Algebra",
  "Category of Monoids",
  "Set Theory",
  "Examples of Categories"
```

Schema - Example

Category of Monoids is Category

Theorem

Let **Mon** be the category of monoids.

Then Mon is a metacategory.

Proof

Let us verify the axioms (C1) up to (C3) for a metacategory.

We have Composite of Homomorphisms on Algebraic Structure is Homomorphism, verifying (C1).

We have Identity Mapping is Automorphism providing id_S for every monoid (S, \circ) .

Now, (C2) follows from Identity Mapping is Left Identity and Identity Mapping is Right Identity.

Finally, (C3) follows from Composition of Mappings is Associative.

Hence **Mon** is a metacategory.

```
"proofs": [
    "contents": [
      "Let us verify the axioms $(C1)$ up to $(C3)$ for a [[Definition:Metacategory|metacategory]].",
      "We have [[Composite of Homomorphisms on Algebraic Structure is Homomorphism]], verifying $(C1)$.",
      "We have [[Identity Mapping is Automorphism]] providing $\\operatorname{id}_S$ for every
          [[Definition:Monoid|monoid]] $\\left({S, \\circ}\\right)$.",
     "Now, $(C2)$ follows from [[Identity Mapping is Left Identity]] and
          [[Identity Mapping is Right Identity]].",
     "Finally, $(C3)$ follows from [[Composition of Mappings is Associative]].",
     "Hence $\\mathbf{Mon}$ is a [[Definition:Metacategory|metacategory]].",
     "{{qed}}}",
      "refs": [
        "Definition: Metacategory",
        "Composite of Homomorphisms is Homomorphism/Algebraic Structure",
        "Identity Mapping is Automorphism",
        "Definition: Monoid",
        "Identity Mapping is Left Identity",
        "Identity Mapping is Right Identity",
        "Composition of Mappings is Associative",
        "Definition: Metacategory"
      "ref_ids": [ 21454, 3852, 418, 19948, 217, 4387, 1494, 21454 ]
```

Summary

- ~30k theorems & proofs
- ~14k definitions
- ~2k other pages (e.g. axioms)

	Source	All	PWiki	Stacks	RA	NT
Theorem	N	32,579	19,734	12,479	298	68
	Tokens	46.7	38.2	60.6	33.6	23.7
	Lines	5.9	3.6	9.7	8.4	4.5
	Refs	1.8	2.8	0.2	0.0	0.0
Proof	N	32,012	19,234	12,479	235	64
	Tokens	181.5	199.3	155.5	128.9	97.2
	Lines	24.9	25.8	23.4	36.1	16.1
	Refs	5.6	7.4	3.0	1.6	0.9
on	N	14,230	12,420	1,687	86	37
Definition	Tokens	48.4	45.0	73.2	58.6	32.6
	Lines	5.0	4.2	10.7	13.3	5.1
	Refs	2.9	3.3	0.4	0.0	0.0
	N	1,974	1,006	968	_	_
Other	Tokens	212.1	286.1	135.2	_	_
	Lines	34.4	46.7	21.7	_	_
	Refs	5.7	9.2	2.0	_	_

Summary

- ~30k theorems & proofs
- ~14k definitions
- ~2k other pages (e.g. axioms)

NaturalProofs Dataset

We provide the NaturalProofs Dataset (JSON per domain):

NaturalProofs Dataset [zenodo]	Domain		
naturalproofs_proofwiki.json	ProofWiki		
naturalproofs_stacks.json	Stacks		
naturalproofs_trench.json	Real Analysis textbook		
naturalproofs_stein.json (script)	Number Theory textbook		

To download NaturalProofs, use:

python download.py --naturalproofs --savedir /path/to/savedir

https://github.com/wellecks/naturalproofs

- Motivation: "Mathematical assistant"
- Data: Multi-domain NaturalProofs
- Tasks: Reference retrieval & generation
- Future directions

Mathematical reasoning

Theorem

Let (G, \circ) be a group.

Let $\iota: G \to G$ be the inversion mapping on G.

Then ι is a permutation on G.

Mathematical reasoner

David Hilbert

Proof 1

The inversion mapping on G is the mapping $\iota:G\to G$ defined by:

$$\forall g \in G : \iota(g) = g^{-1}$$

where g^{-1} is the inverse or g.

By Inversion Mapping is Involution, ι is an involution:

$$\forall g \in G : \iota(\iota(g)) = g$$

The result follows from Involution is Permutation.

Mathematical reasoning

Theorem

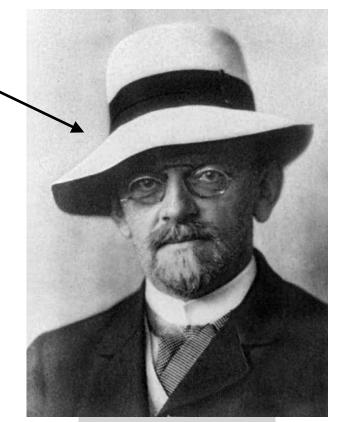
Let (G, \circ) be a group.

Let $\iota: G \to G$ be the inversion mapping on G.

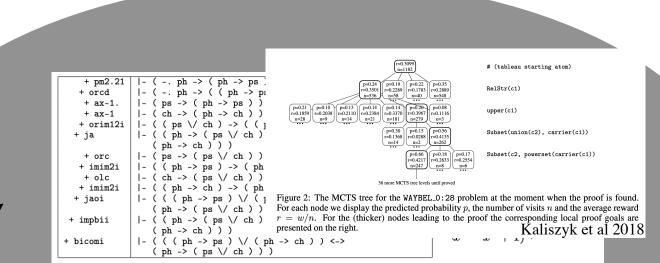
Then ι is a permutation on G.

Mathematical reasoner

Symbolic, search



David Hilbert



 $3xy\cos(x) - \sqrt{9x^2\sin(x)^2 + 1}y' + 3y\sin(x) = 0$

 $4x^{4}yy'' - 8x^{4}y'^{2} - 8x^{3}yy' - 3x^{3}y'' - 8x^{2}y^{2} - 6x^{2}y' - 3x^{2}y'' - 9xy' - 3y = 0$

Proof 1

The inversion mapping on G is the mapping $\iota:G o G$ defined by:

$$\forall g \in G : \iota(g) = g^{-1}$$

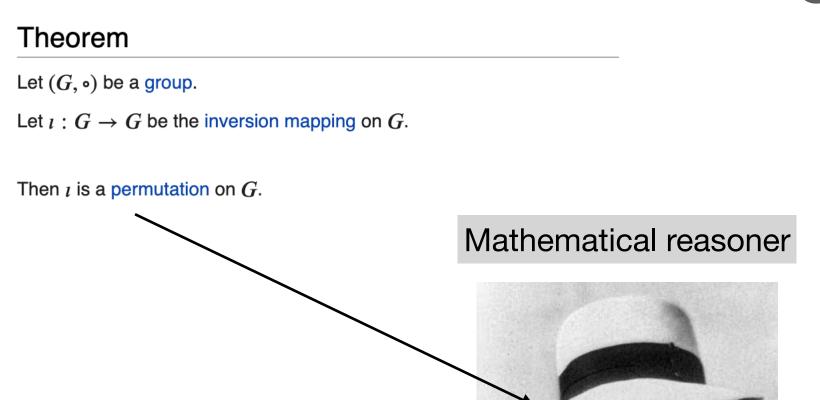
where g^{-1} is the inverse or g.

By Inversion Mapping is Involution, ι is an involution:

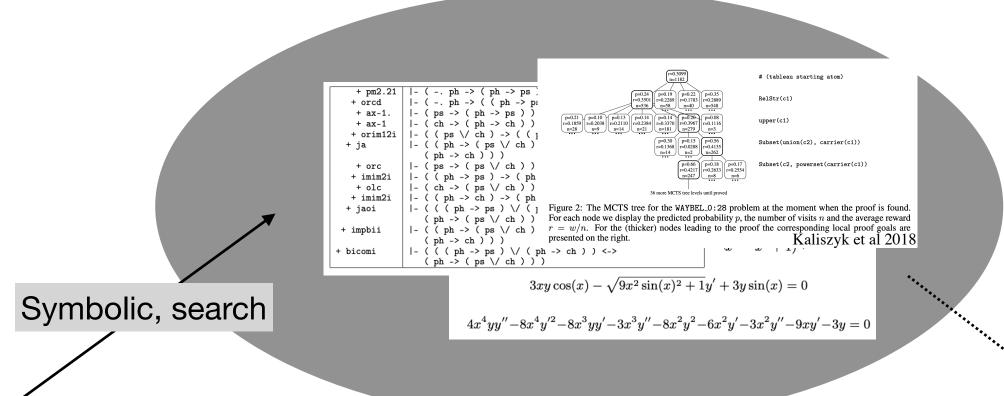
$$\forall g \in G : \iota(\iota(g)) = g$$

The result follows from Involution is Permutation.

Mathematical reasoning



David Hilbert



Intuition, analogy, pattern matching

"this seems related to involutions"

"a few days ago I proved that an <u>involution is a permutation</u>..."

Proof 1

The inversion mapping on G is the mapping $\iota: G \to G$ defined by:

$$\forall g \in G : \iota(g) = g^{-1}$$

where g^{-1} is the inverse or g.

By Inversion Mapping is Involution, ι is an involution:

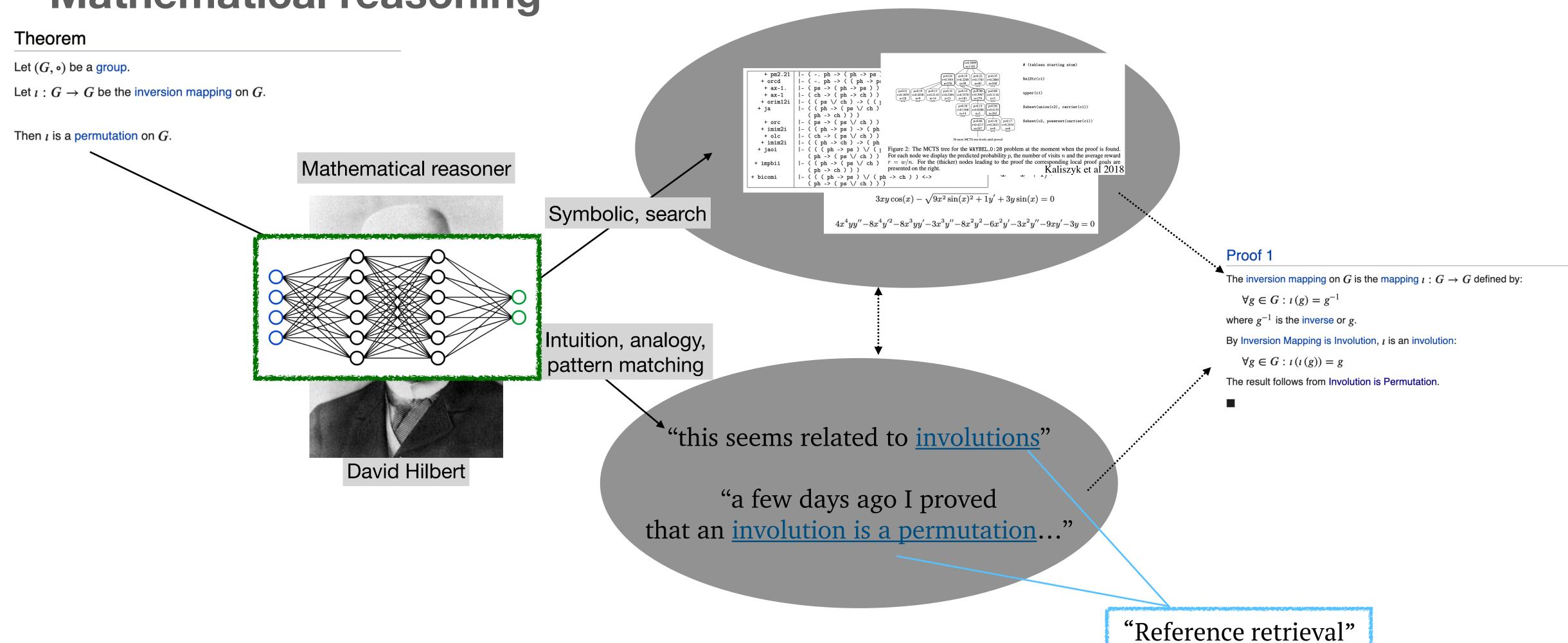
$$\forall g \in G : \iota(\iota(g)) = g$$

The result follows from Involution is Permutation.

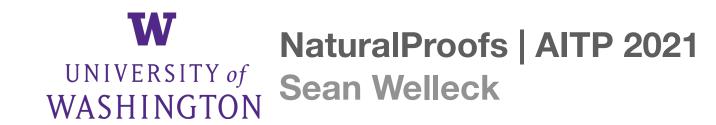
_

"Reference retrieval" Premise selection

Mathematical reasoning

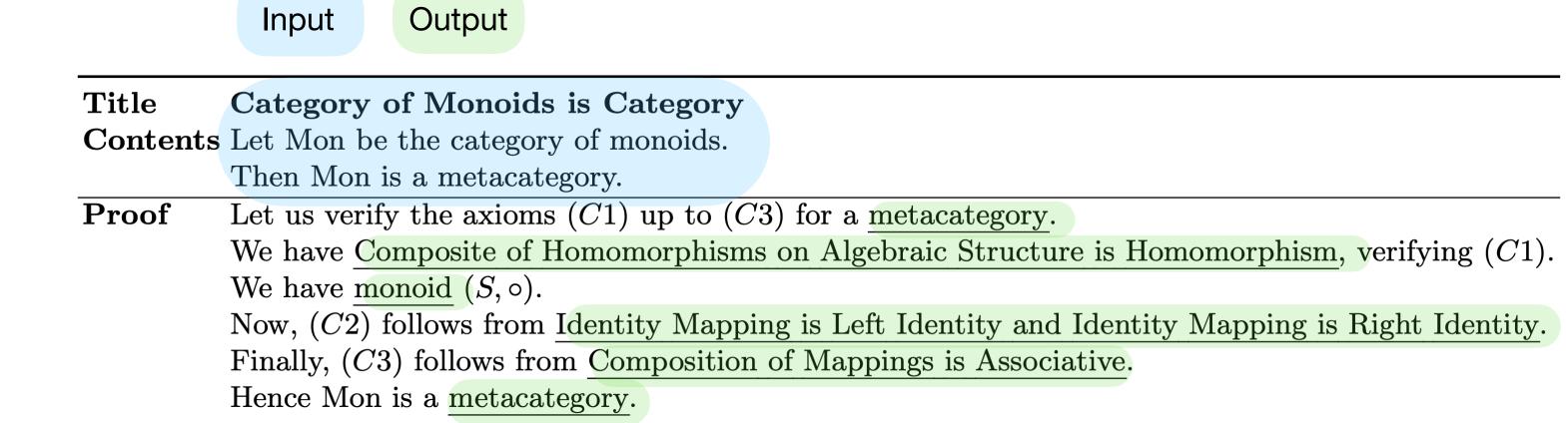


Premise selection



Task

- Given a statement, retrieve references that occur in its proof.
- Retrieval:
 - **x**: theorem
 - \triangleright \mathscr{R} : theorems, definitions, other
 - $ightharpoonup \mathbf{r}^{(1)}, ..., \mathbf{r}^{(|\mathcal{R}|)}$: ranked list
 - Highly ranked \Longrightarrow in proof of **x**
- Evaluate with **standard retrieval metrics**



Task

- Given a statement, retrieve references that occur in its proof.
- Retrieval:
 - **x**: theorem
 - \triangleright \mathscr{R} : theorems, definitions, other
 - $ightharpoonup \mathbf{r}^{(1)}, ..., \mathbf{r}^{(|\mathcal{R}|)}$: ranked list
 - Highly ranked \Longrightarrow in proof of \mathbf{x}
- Evaluate with **standard retrieval metrics**

Title	Category of Monoids is Category				
Contents	s Let Mon be the category of monoids.				
	Then Mon is a metacategory.				
Proof	Let us verify the axioms $(C1)$ up to $(C3)$ for a metacategory.				
	We have Composite of Homomorphisms on Algebraic Structure is Homomorphism, verifying $(C1)$				
	We have monoid (S, \circ) .				
	Now, $(C2)$ follows from Identity Mapping is Left Identity and Identity Mapping is Right Identity.				
	Finally, $(C3)$ follows from Composition of Mappings is Associative.				
	Hence Mon is a metacategory.				

Premise selection

Output

Input

- [e.g. Alemi et al 2017, Piotrowski & Urban 2020]
- Natural language premise selection
 - [Ferreira & Freitas 2020 a, b]
 - $\mathbf{r} \in \operatorname{proof}(\mathbf{x}) \text{ for } R \subset \mathcal{R} \text{ (e.g. } |R| \leq 30)$

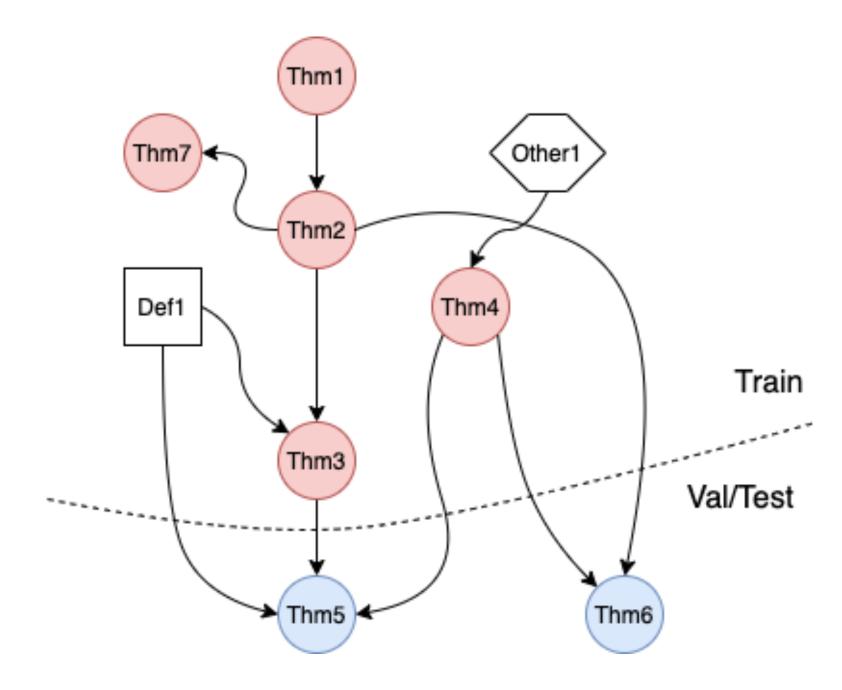
Data

- NaturalProofs-derived retrieval dataset
 - 25,000 examples $(\mathbf{x}, {\{\mathbf{r}_1, ..., \mathbf{r}_{|y|}\}})$
 - \rightarrow 45,000 references $|\mathcal{R}|$

	Split	P+S	ProofWiki	Stacks	RA	NT
Examples $ \mathcal{E} $	total	25,271	14,698	10,573	167	40
	train	21,446	12,424	9,022	_	_
	valid	1,914	1,139	775	_	_
	test	1,911	1,135	776	167	40
Refs $ \mathcal{R} $	train	42,056	28,473	13,583	_	_
	valid	45,805	30,671	15,134	_	_
	test	45,805	30,671	15,134	384	105
Refs/Ex y	train	5.9	7.5	3.6	_	_
	valid	5.6	7.5	2.9	_	_
	test	5.6	7.4	2.9	2.2	1.5

Data

- NaturalProofs-derived retrieval dataset
 - 25,000 examples $(\mathbf{x}, {\{\mathbf{r}_1, ..., \mathbf{r}_{|y|}\}})$
 - \rightarrow 45,000 references $|\mathcal{R}|$
- Temporal evaluation splits
 - Prove new theorems at evaluation time
- Textbooks evaluation set
- References per example:
 - ~7.5 Proofwiki, ~3 Stacks, ~2 textbooks



General objective

- Learning: With theorem **x**, references in proof $\mathbf{y} = \{\mathbf{r}_1, ..., \mathbf{r}_{|\mathbf{y}|}\}$
 - ▶ True reference distribution

$$p_*(\mathbf{r} \mid \mathbf{x}) \propto \begin{cases} 1 & \mathbf{r} \in \mathbf{y} \\ 0 & \text{otherwise} \end{cases}$$

▶ Goal: match true distribution

$$\min_{\theta} \text{KL}(p_*(\cdot \mid \mathbf{x}) \mid p_{\theta}(\cdot \mid \mathbf{x}))$$

$$\equiv \min_{\theta} - \sum_{\mathbf{r} \in \mathbf{y}} \log \frac{\exp(s_{\theta}(\mathbf{x}, \mathbf{r}))}{\sum_{\mathbf{r}' \in \mathcal{R}} \exp(s_{\theta}(\mathbf{x}, \mathbf{r}'))}$$

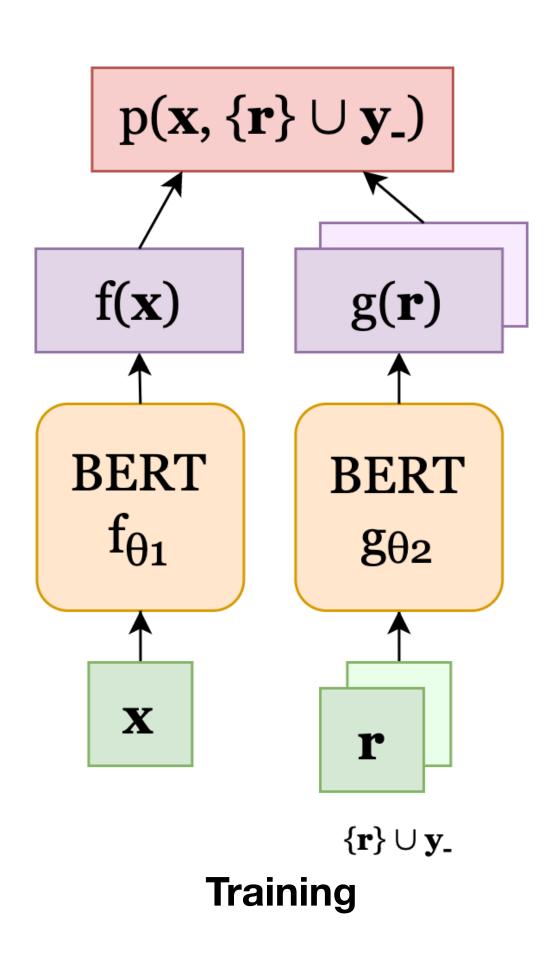
Pairwise model

- Model 1: "Pairwise"
 - ▶ Pairwise scoring: $s_{\theta}(\mathbf{x}, \mathbf{r}) = f_{\theta_1}(\mathbf{x})^{\mathsf{T}} g_{\theta_2}(\mathbf{r})$

▶ **Approximate loss:** Contrast each reference with negatives

$$\mathcal{L}(\mathbf{x}, \mathbf{r}, \mathbf{y}_{-}) = -\sum_{\mathbf{r} \in \mathbf{y}} \log \frac{\exp(s_{\theta}(\mathbf{x}, \mathbf{r}))}{\sum_{\mathbf{r}' \in \mathbf{y}_{-}} \exp(s_{\theta}(\mathbf{x}, \mathbf{r}'))}$$

Negatives: other references in the mini-batch [Karpukhin et al 2020]



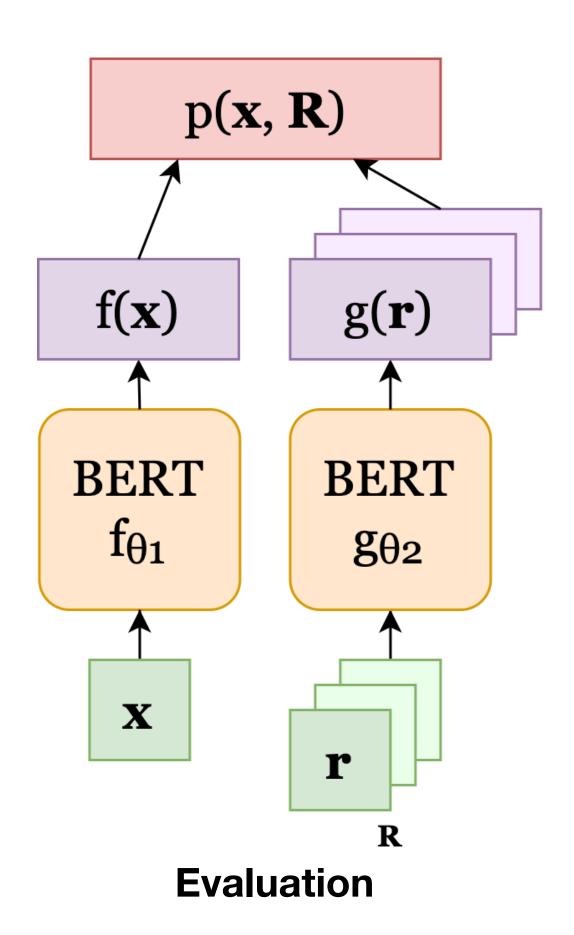
Pairwise model

- Model 1: "Pairwise"
 - ▶ Pairwise scoring: $s_{\theta}(\mathbf{x}, \mathbf{r}) = f_{\theta_1}(\mathbf{x})^{\mathsf{T}} g_{\theta_2}(\mathbf{r})$

▶ **Approximate loss:** Contrast each reference with negatives

$$\mathcal{L}(\mathbf{x}, \mathbf{r}, \mathbf{y}_{-}) = -\sum_{\mathbf{r} \in \mathbf{y}} \log \frac{\exp(s_{\theta}(\mathbf{x}, \mathbf{r}))}{\sum_{\mathbf{r}' \in \mathbf{y}_{-}} \exp(s_{\theta}(\mathbf{x}, \mathbf{r}'))}$$

Negatives: other references in the mini-batch [Karpukhin et al 2020]



Joint model

- Model 2: "Joint"
 - ▶ Parallel scoring: $p_{\theta}(\cdot | \mathbf{x}) = \operatorname{softmax} (\mathbf{R} f_{\theta}(\mathbf{x}))$

where
$$\mathbf{R} \in \mathbb{R}^{|\mathcal{R}| \times d}$$

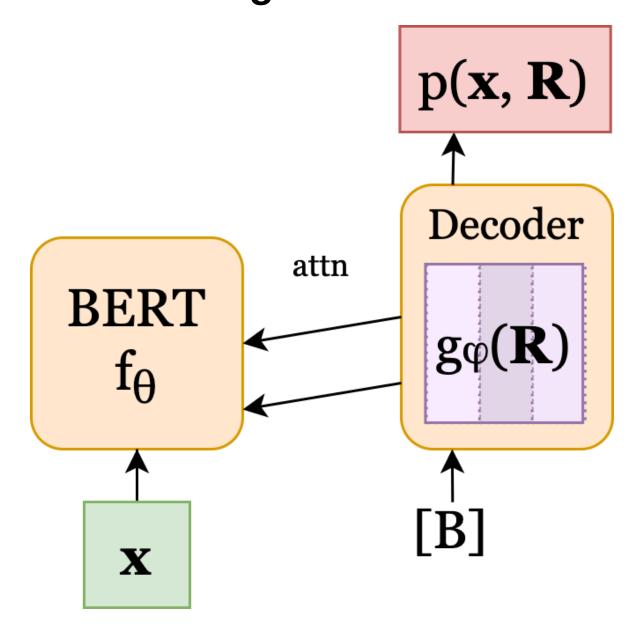
 $f_{\theta}(\mathbf{x}) \in \mathbb{R}^{d}$

 \blacktriangleright Use the pairwise model's reference encoder to populate ${f R}$,

$$\mathbf{R} = \begin{bmatrix} -- & g_{\phi}(\mathbf{r}_1) & -- \\ & \cdots & \\ --g_{\phi}(\mathbf{r}_{|\mathcal{R}|}) & -- \end{bmatrix},$$

▶ Exact loss: $\mathcal{L}(\mathbf{x}, \mathbf{y}) = \mathrm{KL}(p_*(\cdot | \mathbf{x}) | p_{\theta}(\cdot | \mathbf{x}))$

Training & Evaluation



Experiments

- In-domain
 - Train and evaluate on the same domain
 - Ablations & analysis
- Out-of-domain
 - Evaluate on an unseen domain (textbooks)

Experiments In-domain

		mAP	Recall@10	Full@10	Recall@100	Full@100
Wiki	TF-IDF BERT pair	$\begin{array}{ c c } \hline 6.19 \\ 16.82 \\ \hline \end{array}$	$10.27 \\ 23.73$	4.14 7.31	$23.09 \\ 63.75$	$9.43 \\ 38.50$
\mathbf{PV}	BERT joint	36.75	42.45	20.35	75.90	50.22
KS	$\mathbf{TF}\mathbf{-IDF}$	13.64	25.46	18.94	47.36	37.76
Stacks	BERT pair	20.93	37.43	30.03	74.21	66.37
N N	BERT joint	28.32	39.10	31.96	73.61	65.59

Experiments In-domain

		mAP	Recall@10	Full@10	Recall@100	Full@100
ki.	TF-IDF	6.19	10.27	4.14	23.09	9.43
Wiki	BERT pair	16.82	23.73	7.31	63.75	38.50
Б	BERT joint	36.75	42.45	20.35	75.90	50.22
	TF-IDF	13.64	25.46	18.94	47.36	37.76
Stacks	BERT pair	20.93	37.43	30.03	74.21	$\boldsymbol{66.37}$
St	BERT joint	28.32	39.10	31.96	73.61	65.59

✓BERT better than classical IR & other baselines

Experiments In-domain

		mAP	Recall@10	Full@10	Recall@100	Full@100
ki	TF-IDF	6.19	10.27	4.14	23.09	9.43
Wiki	BERT pair	16.82	23.73	7.31	63.75	38.50
Б	BERT joint	36.75	42.45	20.35	75.90	50.22
	TF-IDF	13.64	25.46	18.94	47.36	37.76
\mathbf{Stacks}	BERT pair	20.93	37.43	30.03	74.21	66.37
St	BERT joint	28.32	39.10	31.96	73.61	65.59

[✓]BERT better than classical IR & other baselines

[√]Joint improves over **pairwise**

Experiments | In-domain

		mAP	Recall@10	Full@10	Recall@100	Full@100
ki	TF-IDF	6.19	10.27	4.14	23.09	9.43
Wiki	BERT pair	16.82	23.73	7.31	63.75	38.50
Ь	BERT joint	36.75	42.45	20.35	75.90	50.22
	TF-IDF	13.64	25.46	18.94	47.36	37.76
\mathbf{Stacks}	BERT pair	20.93	37.43	30.03	74.21	$\boldsymbol{66.37}$
St	BERT joint	28.32	39.10	31.96	73.61	65.59

- **✓BERT** better than classical IR & other baselines
- **√Joint** improves over **pairwise**
- **√Top 10** contains ~40% of true references
 - All true references for 20-30% examples

Experiments In-domain

		mAP	Recall@10	Full@10	Recall@100	Full@100
ki.	TF-IDF	6.19	10.27	4.14	23.09	9.43
Wiki	BERT pair	16.82	23.73	7.31	63.75	38.50
Ь	BERT joint	36.75	42.45	20.35	75.90	50.22
$\overline{\mathbf{s}}$	TF-IDF	13.64	25.46	18.94	47.36	37.76
\mathbf{Stacks}	BERT pair	20.93	37.43	30.03	74.21	66.37
St	BERT joint	28.32	39.10	31.96	73.61	65.59

- **✓BERT** better than classical IR & other baselines **✓BERT** top 100 contains:
- **√Joint** improves over **pairwise**
- **Top 10** contains ~40% of true references
 - All true references for 20-30% examples

- - Roughly 75% of true references
 - All true references for ~50-65% of examples
- x Training on both datasets did not yield improvements

Experiments | Qualitative examples

	Source	ProofWiki				
	Theorem	Category of Monoids is Category				
		Let Mon be the category of monoids.				
		Then Mon is a metacategory.				
		Ground-Truth Reference	Rank (Pairwise)	Rank (Joint)		
		Metacategory	1	1		
		Identity Mapping is Left Identity	4	5		
		Identity Mapping is Right Identity	5	4		
True References		Monoid	11	2		
		Composition of Mappings is Associative	21	8		
		Identity Mapping is Automorphism	117	64		
		Composite of Homomorphisms is Homomorphism	n 261	54		
	Rank	Reference (Joint)				
	1	Metacategory				
	2	Monoid				
	3	Identity Morphism				
	4	Identity Mapping is Right Identity				
	5	Identity Mapping is Left Identity				
Top-10 model rankings	6	Associative				
- op - o - monor - on - o	7	Identity (Abstract Algebra)/Two-Sided Identity				
	8	Composition of Mappings is Associative				
	9	Composition of Morphisms				
	10	Semigroup				

Stacks

Experiments | Out-of-domain

- x Neural methods did not generalize well to out-of-domain textbooks
- Training distribution impacts OOD generalization (Proofwiki > Stacks)

Real Analysis **Number Theory R@10** Full@10 mAP R@10 Full@10 15.79 **TF-IDF** 27.54 34.65 16.42 39.62 30.00 35.00 **BERT-pair (P)** 13.24 19.16 15.12 41.51 24.01 35.00 11.24 20.97 16.77 15.85 41.51 +joint **BERT-pair (S)** 11.56 21.28 12.58 14.97 26.42 20.00 7.04 11.55 14.88 26.42 9.58 20.00 +joint

Experiments

- Initializing Joint model with trained pairwise model important
- + using pairwise model's reference embeddings important

Init	Model	mAP
_	Pairwise	16.99
_	Joint	18.71
$f^{ m thm}$	Joint	28.95
$f^{ m thm},{f R}$	Joint	37.51

Table 9: Initializing with pairwise components, and autoregressive retrieval (ProofWiki).

Empirical analysis

• Fine-tuning induces semantic groups in reference embeddings

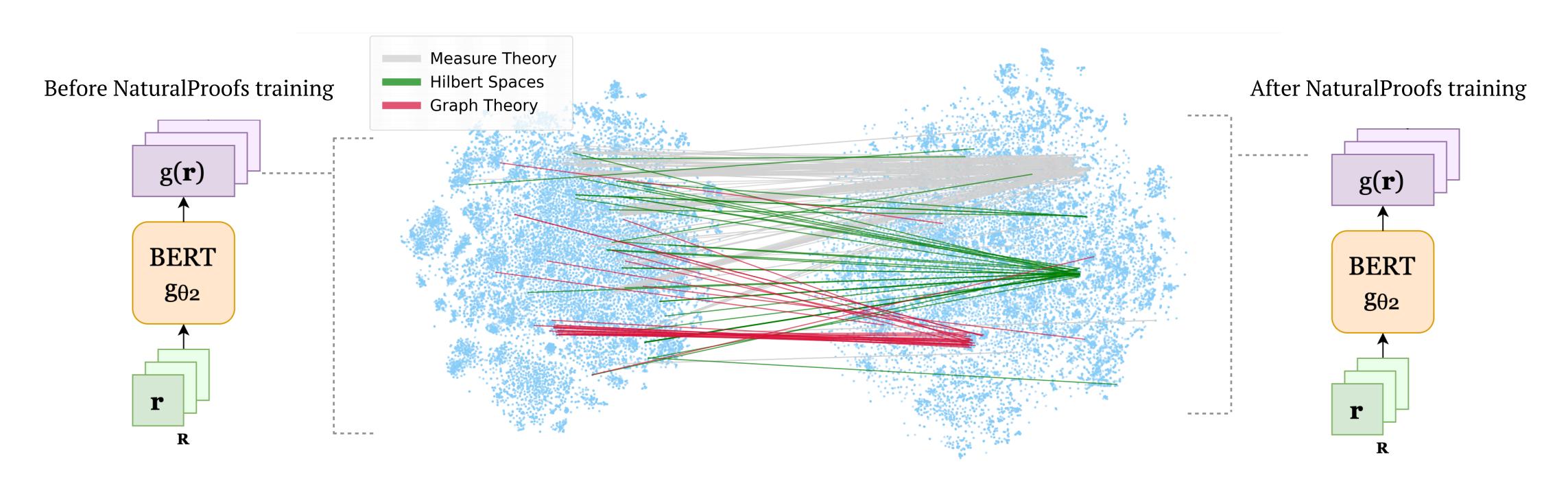


Figure 3. TSNE embeddings for the reference representations before finetuning (left) and after finetuning on NATURALPROOFS (right).

Reference generation

Given a statement x

• Predict the *sequence* of references in its proof, $\mathbf{y} = (\mathbf{r}_1, ..., \mathbf{r}_{|\mathbf{y}|})$

• Autoregressive model (encoder-decoder):

$$p_{\theta}(\mathbf{r}_1, ..., \mathbf{r}_{|\mathbf{y}|} \mid \mathbf{x}) = \prod_{t=1}^{|\mathbf{y}|+1} p_{\theta}(\mathbf{r}_t \mid \mathbf{r}_{< t}, \mathbf{x}),$$

Theorem

Let (G, \circ) be a group.

Let $\iota: G \to G$ be the inversion mapping on G.

Then ι is a permutation on G.

Output

Input

Output:

 $(\mathbf{r}_1, \ldots, \mathbf{r}_{|\mathbf{y}|})$

Proof 1

The inversion mapping on G is the mapping $\iota: G \to G$ defined by:

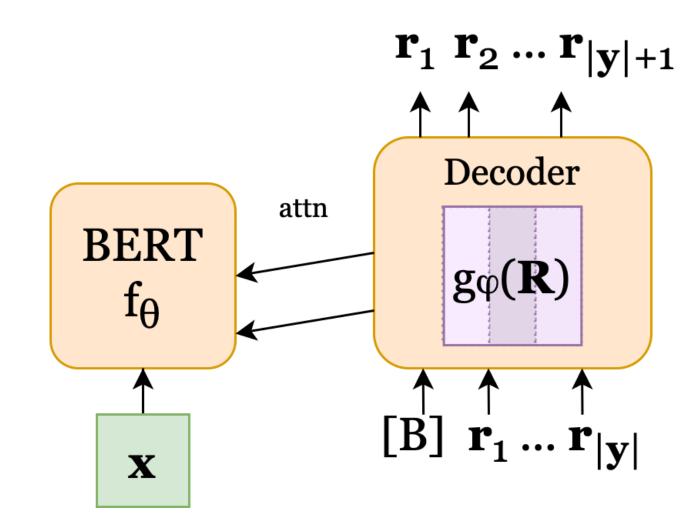
$$\forall g \in G : \iota(g) = g^{-1}$$

where g^{-1} is the inverse or g.

By Inversion Mapping is Involution, i is an involution:

$$\forall g \in G : \iota(\iota(g)) = g$$

The result follows from Involution is Permutation.



Reference generation

- Oracle benchmarks:
 - Correct *set* (random order)
 - Correct *multiset* (random order)
 - Correct 1st half of sequence
- Large room for improvement

	$\mathbf{Edit}(\downarrow)$	$\mathbf{BLEU}(\uparrow)$	$\mathbf{EM}(\uparrow)$	$\mathbf{F1}(\uparrow)$
*- set	58.51	7.18	18.09	97.04
*- $multiset$	58.09	16.68	19.23	100.0
*-halfseq	58.84	25.88	0.00	56.86
Joint	93.03	0.00	0.09	25.30
Sequential	84.30	5.48	3.78	25.61

• Motivation: "Mathematical assistant"

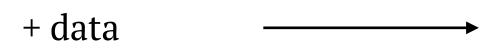
• Data: Multi-domain NaturalProofs

• Tasks: Reference retrieval & generation

• Future directions



Self-supervised tasks & adaptation



Improve generation performance Improve sample efficiency / OOD

▶ Domain-specific self-supervised tasks benefit formalized mathematics

- e.g. Skip-tree [Rabe et al 2020], LIME [Wu et al 2021], PACT [Han et al 2021]
- ▶ What are effective self-supervised tasks for informal mathematics?

New tasks

Next-step generation Title generation

ProofWiki assistant

Suggests references/premises
Suggests next-steps
Retrieves related background sources

Textbook assistant

- **▶** Other tasks with informal mathematics
- Preliminary exploration:
 - ▶ BART title generation

Let A be the set of all real sequences $\langle x_i \rangle$ such that the series $\sum_{i \geq 0} x_i^2$ is convergent.

Let $\ell^2 = (A, d_2)$ be the Hilbert sequence space on \mathbb{R} .

Then ℓ^2 is not a locally compact Hausdorff space.

```
=== Samples:
Title: Hilber
```

Title: Hilbert Sequence Space is not Locally Compact
Title: Hilbert Sequence Space is not Locally Compact
Title: Hilbert Sequence Space is not Locally Compact Hausdorff

=== Ground-truth:

Title: Hilbert Sequence Space is not Locally Compact Hausdorff Space

New tasks

Next-step generation Title generation

ProofWiki assistant

Suggests references/premises
Suggests next-steps
Retrieves related background sources

Textbook assistant

- **▶** Other tasks with informal mathematics
- Preliminary exploration:
 - ▶ BART title generation
 - Next-step generation
 - ▶ Retrieval-augmented generation
- ▶ Note: no formal grounding for eval

Let $n \in \mathbb{Z}_{\geq 0}$ be a positive integer. Then:

$$\sum_{k} {n \brack k} = n!$$

where:

 $\begin{bmatrix} n \\ k \end{bmatrix}$ denotes an unsigned Stirling number of the first kind

n! denotes the factorial of n.

=== Samples:

Title: Sum of Unsigned Stirling Numbers of the First Kind

Title: Sum of Stirling Numbers of the First Kind

Title: Sum of Unsigned Stirling Numbers of the First Kind

=== Ground-truth:

Title: Summation over Lower Index of Unsigned Stirling Numbers of the First Kind

→ formal
 → Evaluation
 Controlled languages?

- Retrieval-augmented generation
 - ▶ Induce association between informal and formal
- Bootstrapping from aligned corpora

Thank you!

Resources

• Data/models/code: https://github.com/wellecks/naturalproofs

This repo contains:

- The NaturalProofs Dataset
- Tokenized task data for mathematical reference retrieval and generation.
- Preprocessing NaturalProofs and the task data.
- Training and evaluation for mathematical reference retrieval and generation.
- Pretrained models for mathematical reference retrieval and generation.

NaturalProofs Dataset

We provide the NaturalProofs Dataset (JSON per domain):

NaturalProofs Dataset [zenodo]	Domain
naturalproofs_proofwiki.json	ProofWiki
naturalproofs_stacks.json	Stacks
naturalproofs_trench.json	Real Analysis textbook
naturalproofs_stein.json (script)	Number Theory textbook

To download NaturalProofs, use:

python download.py --naturalproofs --savedir /path/to/savedir

• Neurips 2021 Datasets & Benchmarks: https://arxiv.org/pdf/2104.01112.pdf

Pretrained Models

We provide the following models used in the paper:

Туре		Domain
Pairwise	bert-base-cased	Proofwiki
Pairwise	bert-base-cased	Stacks
Pairwise	bert-base-cased	Proofwiki+Stacks
Joint	bert-base-cased	Proofwiki
Joint	bert-base-cased	Stacks
Joint	bert-base-cased	Proofwiki+Stacks
Autoregressive	bert-base-cased	Proofwiki
Autoregressive	bert-base-cased	Stacks

To download and unpack them, use:

python download.py --checkpoint --savedir /path/to/savedir