Minimal Generating Sets in Magmas

Mikoláš Janota¹ António Morgado² Petr Vojtěchovský³

Czech Technical University in Prague
IST/INESC-ID, University of Lisbon, Portugal,
³ University of Denver

AITP 2021

In algebra we have

- groups
- semi-groups
- quasi-groups
- loops
- • •

In algebra we have

- groups
- semi-groups
- quasi-groups
- loops
- ••••

These are all magmas.

- A set *S* is generating if all the other elements can be obtained by a finite number of multiplications
- **Example:** \mathbb{N} is generated by $\{0,1\}$ under +.

Smallest Generating Sets

*	1	2	3
1	2	3	1
2	3	1	2
3	1	2	3

■ Is {2,3} generating?

Smallest Generating Sets

*	1	2	3
1	2	3	1
2	3	1	2
3	1	2	3

- Is {2,3} generating?...YES
- Is it the smallest possible? NO

Smallest Generating Sets

*	1	2	3
1	2	3	1
2	3	1	2
3	1	2	3

- Is {2,3} generating?...YES
- Is it the smallest possible? NO
- $\{1\}$ is already generating

Example: Determine if to structures are isomorphic

Many other algorithms in computational algebra depend on the generating set and its size.

Calculating Minimal Generating set (finite case)

- The problem is in NP
- SAT solvers scale poorly on the problem
- Can we use SAT without overloading it?

1 If $C = \emptyset$, we are **DONE**.

- **1** If $C = \emptyset$, we are **DONE**.
- **2** If $C \neq \emptyset$, any generating S' must intersect with C.

To guarantee the smallest, always calculate the smallest candidate.

The problem in each iteration is in fact: Minimum Hitting Set

- The problem in each iteration is in fact: Minimum Hitting Set
- 2 SAT performs poorly on those

- The problem in each iteration is in fact: Minimum Hitting Set
- 2 SAT performs poorly on those
- **3** Integer Linear Programming solvers (gurobi) extremely well.

- The problem in each iteration is in fact: Minimum Hitting Set
- 2 SAT performs poorly on those
- **3** Integer Linear Programming solvers (gurobi) extremely well.
- 4 Thousands of elements

- The problem in each iteration is in fact: Minimum Hitting Set
- 2 SAT performs poorly on those
- **3** Integer Linear Programming solvers (gurobi) extremely well.
- 4 Thousands of elements
- 5 We have seen minimal generating sets up to 7

Musing

• Why does it work so well?

Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.

In general: when does it pay off to directly target the original problem and when to do the gradual refinement?

Musing

• Why does it work so well?

- In general: when does it pay off to directly target the original problem and when to do the gradual refinement?
- Understanding the results

- In general: when does it pay off to directly target the original problem and when to do the gradual refinement?
- Understanding the results
 - If A₁ generated by size m, if A₂ generated by size n, A₁ × A₂ generated by size m + n.

- In general: when does it pay off to directly target the original problem and when to do the gradual refinement?
- Understanding the results
 - If A₁ generated by size m, if A₂ generated by size n, A₁ × A₂ generated by size m + n.
 - BUT sometimes less.

- In general: when does it pay off to directly target the original problem and when to do the gradual refinement?
- Understanding the results
 - If A₁ generated by size m, if A₂ generated by size n, A₁ × A₂ generated by size m + n.
 - BUT sometimes less.
 - When?