Minimal Generating Sets in Magmas

Mikoláš Janota ${ }^{1}$ António Morgado ${ }^{2}$ Petr Vojtěchovskýs ${ }^{3}$

${ }^{1}$ Czech Technical University in Prague
2 IST/INESC-ID, University of Lisbon, Portugal,
${ }^{3}$ University of Denver

AITP 2021

Background

In algebra we have

- groups
- semi-groups

■ quasi-groups

- loops

Background

In algebra we have

- groups
- semi-groups

■ quasi-groups

- loops
- ...

These are all magmas.

Generating Set (Generators)

- A set S is generating if all the other elements can be obtained by a finite number of multiplications
■ Example: \mathbb{N} is generated by $\{0,1\}$ under + .

Smallest Generating Sets

$*$	1	2	3
1	2	3	1
2	3	1	2
3	1	2	3

- Is $\{2,3\}$ generating?

Smallest Generating Sets

$*$	1	2	3
1	2	3	1
2	3	1	2
3	1	2	3

■ Is $\{2,3\}$ generating?... YES
■ Is it the smallest possible? NO

Smallest Generating Sets

$*$	1	2	3
1	2	3	1
2	3	1	2
3	1	2	3

■ Is $\{2,3\}$ generating?... YES
■ Is it the smallest possible? NO
■ $\{1\}$ is already generating

$$
\begin{array}{ll}
1 & =1 \\
1 * 1 & =2 \\
1 * 1 * 1 & =3
\end{array}
$$

Why Interesting?

Example: Determine if to structures are isomorphic

Why Interesting?

Example: Determine if to structures are isomorphic

Why Interesting?

Example: Determine if to structures are isomorphic

Why Interesting?

Example: Determine if to structures are isomorphic

Many other algorithms in computational algebra depend on the generating set and its size.

Calculating Minimal Generating set (finite case)

- The problem is in NP
- SAT solvers scale poorly on the problem

■ Can we use SAT without overloading it?

Idea

Idea

Idea

Idea

1 If $C=\emptyset$, we are DONE.

Idea

1 If $C=\emptyset$, we are DONE.
2 If $C \neq \emptyset$, any generating S^{\prime} must intersect with C.

From Idea to Algorithm

To guarantee the smallest, always calculate the smallest candidate.

A Few Words about the Implementation and Results

1 The problem in each iteration is in fact: Minimum Hitting Set

A Few Words about the Implementation and Results

1 The problem in each iteration is in fact: Minimum Hitting Set
2 SAT performs poorly on those

A Few Words about the Implementation and Results

1 The problem in each iteration is in fact: Minimum Hitting Set
2 SAT performs poorly on those
3 Integer Linear Programming solvers (gurobi) extremely well.

A Few Words about the Implementation and Results

1 The problem in each iteration is in fact: Minimum Hitting Set
2 SAT performs poorly on those
3 Integer Linear Programming solvers (gurobi) extremely well.
4 Thousands of elements

A Few Words about the Implementation and Results

1 The problem in each iteration is in fact: Minimum Hitting Set
2 SAT performs poorly on those
3 Integer Linear Programming solvers (gurobi) extremely well.
4 Thousands of elements
5 We have seen minimal generating sets up to 7

Musing

■ Why does it work so well?
Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.

Musing

■ Why does it work so well?
Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.
■ In general: when does it pay off to directly target the original problem and when to do the gradual refinement?

Musing

- Why does it work so well?

Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.
■ In general: when does it pay off to directly target the original problem and when to do the gradual refinement?

- Understanding the results

Musing

- Why does it work so well?

Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.
■ In general: when does it pay off to directly target the original problem and when to do the gradual refinement?

- Understanding the results
- If A_{1} generated by size m, if A_{2} generated by size n, $A_{1} \times A_{2}$ generated by size $m+n$.

Musing

- Why does it work so well?

Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.
■ In general: when does it pay off to directly target the original problem and when to do the gradual refinement?

- Understanding the results
- If A_{1} generated by size m, if A_{2} generated by size n, $A_{1} \times A_{2}$ generated by size $m+n$.
- BUT sometimes less.

Musing

- Why does it work so well?

Example: In 2000 elements, complements at least thousand elements, only hundreds are needed to force size 6 generating set.
■ In general: when does it pay off to directly target the original problem and when to do the gradual refinement?

- Understanding the results
- If A_{1} generated by size m, if A_{2} generated by size n, $A_{1} \times A_{2}$ generated by size $m+n$.
- BUT sometimes less.
- When?

