Decision Trees for Tactic Prediction in Coq

Liao Zhang^{1,3}, Lasse Blaauwbroek^{1,2}, Bartosz Piotrowski^{1,4}, Cezary Kaliszyk^{3,4} and Josef Urban¹

1 Czech Technical University, Prague, Czech Republic

2 Radboud University, Nijmegen, The Netherlands

3 University of Innsbruck, Austria

4 University of Warsaw, Poland

Introduction

• Proof automation: Coq Tactician

• Better learning model of decision trees

• More precise tactic characterization

Proof Automation

- very large tactic space
- time-consuming

	construct the proof of a theorem automatically	
machine-mechanized proofs		machine learning

consider the proof automation for Coq

Coq Tactician

Features

- Atom nodes
- Term tree walks up to length two

 $\{(features_i, tactic_i)\}_{i \in 1...n}$

K-Nearest Neighbors (k-NN)

- *K*-NN:
 - Originally used in Tactician
 - Sort likely tactics by the distance measurement between proof states
- Very weak learner:
 - a stronger learner decision trees

Decision Trees

Decision Trees

the feature of the parent

node does not exist $_{\rm 42}$

Easy to overfit:

- A tree can grow very deep
- Tend to learn highly irregular patterns

Random Forests (RF)

Random Forests (RF)

Gradient Boosted Trees

Training:

- Build several decision trees
- The next decision tree minimizes the mistake made by the previous trees

Models

- Classification
 - Categorize a given set of data (state features) into disjoint classes (tactics)
 - Suit the tactic prediction
- Regression
 - Output continuous values, e.g., $0 \le value \le 1$
 - Simulate classification
 - binary regression with negative examples
 - multi-target regression

	Classification	Regression	
		Binary	Multi-target
Random forests	\checkmark	\checkmark	×
Gradient boosted trees	×	\checkmark	\checkmark

Binary Regression — Training

- positive tactic
 - the tactic applied to the state in the library
 - label 1

Binary Regression — Training

Binary Regression — Prediction

Preselect $tac_1, tac_2, \dots, tac_{100}$ maybe helpful for proving p

Tactic Characterization(1/2)

- Naive hash
- Features of the changed parts of the proof state
 - disappear features + appear features

Tactic Characterization(2/2)

- Naive hash
- Features of changed parts of the proof state
- Features of all the before states

the union as the characterization

Binary/Multi-target Regression

apply tactics as labels

- *feat*: features of a proof state
- *tac*: tactics
- c_i: characterization of the tactic tac_i

characterize tactics as features

Multi-target Regression — Training

a binary regressor for each tactic

- tac_1 , tac_2 , tac_3 in the library
- as a positive example for the corresponding regressor
- as negative examples for the others

positive example: label of f is 1

Multi-target Regression — Prediction

Predict a score of the corresponding tactic by each regressor

Experimental Settings

- Dataset: a random subset of the Coq standard library
- Cumulative frequency: how often the tactic in the library being presented in the first-k predictions
- Chronological evaluation: build a model for each state by learning from the previous states

Cumulative Frequency

— XGB	before states —	-XGB diff
XGB	tactic hash $-$	– k-NN

- XGBoost(XGB): a gradient boosted tree library
- Gradient boosted trees on different characterization
- the union of the before states > the difference >>> naïve hash > k-NN

k

— XGB diff - - - RF diff

- Regression trees use the difference as the characterization
- Gradient boosted trees are a little better than random forests

--- XGB multi-target — RF classifier --- RF diff

- Tasks on multi-target
 regression & classification
- RF on the difference > RF on classification > XGB on multi-target regression

Cumulative Frequency

Results (4/4)

— XGI	B before sta	ates —	XGB diff
XG	B multi-tar	get —	RF classifier
	RF diff	X	KGB tactic hash
	k-NN		

XGB on before states > XGB on difference > RF on difference > RF on classification > XGB on multi-target regression > XGB on tactic hash > k-NN

Conclusions and Future Work

- Conclusions:
 - Decision trees perform much better than *k*-NN on tactic prediction
 - Appropriate tactic characterization enhances the prediction power
 - No significant difference between random forests and gradient boosted trees
- Future work:
 - Improve our online random forests, see our CICM paper [Zhang etc. 2021]
 - Investigate better tactic characterization, e.g., the union of all the differences

Online Learning (1/4)

Online learning: quickly update the model after adding new training examples

Online Learning (2/4)

Need the result of *plus_0_n*

Online Learning (3/4)

Online Learning (4/4)

```
Theorem plus_O_n : forall n:nat, 0 + n = n.
Proof.
simpl.
reflexivity.
Qed.
Theorem mult_O_plus : forall n m : nat,
  (0 + n) * m = n * m.
Proof.
  intros n m.
  rewrite plus_O_n.
  reflexivity.
Qed.
```

Online Random Forests (1/3)

Online Random Forests (2/3)

Online Random Forests (3/3)

- Make a new tree when an example is passed to the forest
 - with the probability of $\frac{1}{n}$
 - *n* is the number of trees in the forest
 - $\frac{1}{3}$ in the example