Decision Trees for Tactic
Prediction in Coq

Liao Zhang!3, Lasse Blaauwbroek?!?, Bartosz Piotrowskil#, Cezary Kaliszyk34 and Josef Urban?
1 Czech Technical University, Prague, Czech Republic
2 Radboud University, Nijmegen, The Netherlands
3 University of Innsbruck, Austria
4 University of Warsaw, Poland

Introduction

* Proof automation: Coqg Tactician
 Better learning model of decision trees

* More precise tactic characterization

Proof Automation

* very large tactic space
* time-consuming

construct the proof of a tml

theorem automatically @

machine-mechanized machine learning
proofs

consider the proof automation for Coq

Coq Tactician

Coq proofs

(proof _state,, tacy) (feat,, tacy)
(proof _St.atel, tacy) (f eatl,.tacl)

!/

tac'yg

tac”
proved < < oo [p'roof_state’1] <

learning model

!/
tac' oo

/
tac'oq

v

A

feat',

[

proof _state’,
to prove

better decision

Coq Tactician

tree models
(proof _state,, tacy) (feat,, tacy)
(proo f_st.atel, tacy) (f eatl,.tacl)
) . learning model
A
Coq proofs
tac' oo ,
tac'y, feat'o
v

tac” tac'g '
tate
roved - eoo [tate'] < proof_s 0
proof state, { to prove

Features

 Atom nodes

* Term tree walks up to length two

{(features;, tactic;)}ie1.n

K-Nearest Neighbors (k-NN)

e K-NN:
 Originally used in Tactician
« Sort likely tactics by the distance measurement between

proof states

* Very weak learner:

* a stronger learner — decision trees

Decision Trees

input
X0 (x0, X1, X2)
Q Q ° feature
° 0 e e output label/tactic

the feature of the parent
node exists

the feature of the parent
node does not exist

Decision Trees

input
X0 [« (X0, X1, X2)

()

Q Q ° Q feature
° 0 e ° output . label/tactic
the feature of the parent

_ node exists
Easy to overfit:

« Atree can grow very deep

« Tend to learn highly irregular patterns

the feature of the parent
node does not exist "

Random Forests (RF)

« Randomly choose some

training data subsets
<subset1§ subset2 RsubsetB - Build a decision tree for

each subset

A 4 A 4 A 4

- - - test
decision treel S decision tree2 jums decision tree3 S
example

predict predict‘ predict

labell label2 label?2

4 Vvote by majority

label2, labell

43

Random Forests (RF)

« Randomly choose some

training data hset
subsets
<subset1§ subset2 RsubsetB - Build a decision tree for

each subset

A 4 A 4 A 4

oo vt I cion v Sl oo s R
example

predict predict predict
label1 label2 label?2
Random forests usually perform
1 worse than gradient boosted trees

label2, labell

44

Gradient Boosted Trees

Training:

* Build several decision trees

 The next decision tree
minimizes the mistake made
by the previous trees

training data

]

d

»> d

x
N|

— d

a

ecision treel

ecision tree2

ecision tree3

X3

G
example

[combination of x4, x,, x5 }7

45

Models

 Classification
« Categorize a given set of data (state features) into disjoint classes
(tactics)
 Suit the tactic prediction

« Regression
« Qutput continuous values, e.g., 0 < value < 1
« Simulate classification
 binary regression with negative examples
« multi-target regression

Classification
Binary Multi-target

Random forests v v x
Gradient boosted trees X v v

46

Binary Regression — Training

feature extraction

y

flifZi "'ifn

Binary Regression — Training

feature extraction characterization

y

flifZi "'ifn

* positive tactic
 the tactic applied to the state

In the library
« label 1

Binary Regression — Training

feature extraction

y

flifZi "'ifn

v
CnegO

\ 4
Cnegl

» features (f, fo, ..., [, c™99), label O

» features (f, fo, ..., [, c™91), label O |«

* negative tactics

« tactics unlikely to be useful
« label O

Binary Regression — Training

feature extraction |

characterization

fu 12 -

I

cPos

eg0

v
Cnegl

features (f4, f>, ..., f, cP%%), label 1

» features (fi, fo, ..., fr, c"¢9Y), label 0 [+

_

» features (fy, fo, .-, fn, c™¢91), label O |«

/

!

regression trees

50

Binary Regression — Prediction

proof state p

{ taci}ier..100

feature

extraction

fi f2) -

) I

tactic
characterization

{ Citie1..100

{1, f2) s fur i) }ier..100

regression trees

{prob;}ie1. 100

return tactics with highest “probability”

Preselect tacy, tac,, ..., tacqgg

maybe helpful for proving p

ol

Tactic Characterization(1/2)

 Naive hash

« Features of the changed parts of the proof state

 disappear features + appear features

—

disappear
features

|

|

hyp,

N—

T

tac

hyp,

B

appear
features

-t

Tactic Characterization(2/2)

* Nalve hash
» Features of changed parts of the proof state
« Features of all the before states

the union as the
characterization

53

Binary/Multi-target Regression

(feat, cy)

(feaft, ¢1)

(fea;r, Cn)

;

decision trees on binary

regression

.

score, Of tac,
score, Of tac,

score,, Of tac,

rank tactics by the scores

characterize tactics as features

feat

|

decision trees on multi-

target regression

|

score, Of tac,
score, Of tac,

score,, Of tac,

\ 4

rank tactics by the scores

apply tactics as labels

feat: features of a
proof state

tac: tactics

c;: characterization of
the tactic tac;

54

Multi-target Regression — Training

[(a proof state, tac,)]

A\ 4

[features]

binary binary binary

regressor regressor regressor
for tacy for tac, for tacs

» negative example: label of fis O

positive example: label of f is 1

a binary regressor for each
tactic

tacq, tac,, tacs In the library
as a positive example for the
corresponding regressor

as negative examples for the
others

55

Multi-target Regression — Prediction

[features f of a proof state }

binary

regressor
for tacy

_ SCOT€7

binary
regressor
for tac,

Scorez‘

binary
regressor
for tacs

scores

\l/

[rank by the score order]

Predict a score of the
corresponding tactic by
each regressor

56

Experimental Settings

« Dataset: a random subset of the Coq standard library

« Cumulative frequency: how often the tactic in the library being

presented In the first-k predictions

» Chronological evaluation: build a model for each state by

learning from the previous states

Cumulative Frequency

Results (1/4)

0.4

0.3

0.2

0.1

—— XGB before states — XGB diff
- - - XGB tactic hash E-NN

XGBoost(XGB): a gradient
boosted tree library

Gradient boosted trees on
different characterization

the union of the before states >
the difference >>> naive hash > k-
NN

58

Results (2/4)

o
e
)|

—
e

0.3

Cumulative Frequency
-
X
a

— XGB diff - - - RF dift

* Regression trees use the
difference as the characterization

« Gradient boosted trees are a little
better than random forests

10Y 101 102

Cumulative Frequency

Results (3/4)

- - - XGB multi-target — RF classifier

- - - RF diff

0.5

« Tasks on multi-target
» regression & classification

 RF on the difference >

RF on classification >

-3 XGB on multi-target regression
0.2

Cumulative Frequency

Results (4/4)

—— XGB before states —— XGB diff
- - - XGB multi-target — RF classifier
- - - RF diff - - - XGB tactic hash
0.5 _ k-NN
0.4 XGB on before states >
XGB on difference >
0.3 RF on difference >
RF on classification >
0.2

XGB on multi-target regression >
XGB on tactic hash >
0.1 |

10(’] 101 102 k'NN

61

Conclusions and Future Work

 Conclusions:

» Decision trees perform much better than k-NN on tactic prediction
« Appropriate tactic characterization enhances the prediction power

« No significant difference between random forests and gradient boosted trees

e Future work:

* Improve our online random forests, see our CICM paper [Zhang etc. 2021]

* |Investigate better tactic characterization, e.g., the union of all the differences

Online Learning (1/4)

Online learning: quickly update the model after adding new training examples

ta)' offline learning algorithms

machine learning

deep learning
offline decision trees

online learning algorithms
input: disjoint features
output: labels/tactics

Online Learning (2/4)

Theorem plus O n : forall n:nat, 0 + n = n. 1 subgoal
Proof.
. n, m : nat
simpl.
reflexivity.
* =

QedJ (0 + n) m n
Theorem mult 0 plus : forall n m : nat,

(O + n) *m=n * m.
Proof.

intros n m.
rewrite plus O n.
reflexivity.

Qed.

Need the result of plus_0_n

*

m

(1/1)

64

Online Learning (3/4)

Theorem plus O n : forall n:nat, 0 + n = n. 1 subgoal
Proof. n, m : nat
simpl.
reflexivity. n*m=n
Qed.
Theorem mult 0 plus : forall n m : nat,
(O + n) *m=n * m.
Proof.

intros n m.
rewrite plus O n.
reflexivity.

Qed.

*

m

(1/1)

65

Online Learning (4/4)

Theorem plus O n : forall n:nat, 0 + n
Proof.
simpl.
reflexivity.
Qed.
Theorem mult 0 plus : forall n m : nat,
(0O + n) *m=n * m.
Proof.

intros n m.

rewrite plus O n.

reflexivity.
Qedw

n.

66

Online Random Forests (1/3)

input during training

()
OO
©000

(2)
o O

(X0, X1, X2)

O
o

feature

label

the feature of the parent
node exists

the feature of the parent
node does not exist

Online Random Forests (2/3)

input during training

()
OO
©000

(xg, X1, %7)

5 split the leaf under a given condition

feature

label

the feature of the parent
node exists

the feature of the parent
node does not exist

Online Random Forests (3/3)

training
example

-

o

treel tree2 tree3 treed

/N

random forest J

« Make a new tree when an example is passed to the forest

+ with the probability of ~
* nis the number of trees in the forest
. % in the example

69

