
Decision Trees for Tactic
Prediction in Coq

Liao Zhang1,3, Lasse Blaauwbroek1,2, Bartosz Piotrowski1,4, Cezary Kaliszyk3,4 and Josef Urban1

1 Czech Technical University, Prague, Czech Republic

2 Radboud University, Nijmegen, The Netherlands

3 University of Innsbruck, Austria

4 University of Warsaw, Poland

34

Introduction

• Proof automation: Coq Tactician

• Better learning model of decision trees

• More precise tactic characterization

35

Proof Automation

machine-mechanized

proofs

• very large tactic space

• time-consuming

machine learning

construct the proof of a

theorem automatically

36

consider the proof automation for Coq

Coq Tactician

Coq proofs

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒′0
to prove

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒′1

𝑡𝑎𝑐′00

(𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒0, 𝑡𝑎𝑐0)
(𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒1, 𝑡𝑎𝑐1)





(𝑓𝑒𝑎𝑡0, 𝑡𝑎𝑐0)
(𝑓𝑒𝑎𝑡1, 𝑡𝑎𝑐1)





𝑓𝑒𝑎𝑡′0
𝑡𝑎𝑐′00
𝑡𝑎𝑐′01





proved
𝑡𝑎𝑐∗

learning model

37

Coq Tactician

Coq proofs

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒′0
to prove

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒′1

𝑡𝑎𝑐′00

(𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒0, 𝑡𝑎𝑐0)
(𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒1, 𝑡𝑎𝑐1)





(𝑓𝑒𝑎𝑡0, 𝑡𝑎𝑐0)
(𝑓𝑒𝑎𝑡1, 𝑡𝑎𝑐1)





𝑓𝑒𝑎𝑡′0
𝑡𝑎𝑐′00
𝑡𝑎𝑐′01





proved
𝑡𝑎𝑐∗

learning model

38

better decision

tree models

Features

• Atom nodes

• Term tree walks up to length two

39

(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 , 𝑡𝑎𝑐𝑡𝑖𝑐𝑖) 𝑖∈1…𝑛

K-Nearest Neighbors (k-NN)

• K-NN:

• Originally used in Tactician

• Sort likely tactics by the distance measurement between

proof states

• Very weak learner:

• a stronger learner — decision trees

40

Decision Trees

x0

x1 x2

x2 x3

t0 t1 t2 t3

t1 t3

(𝑥0, 𝑥1, 𝑥2)
input

feature

label/tactic

the feature of the parent

node exists

the feature of the parent

node does not exist

output

𝑡3

41

Decision Trees

x0

x1 x2

x2 x3

t0 t1 t2 t3

t1 t3

(𝑥0, 𝑥1, 𝑥2)
input

feature

label/tactic

the feature of the parent

node exists

the feature of the parent

node does not exist

output

𝑡3

42

Easy to overfit:

• A tree can grow very deep

• Tend to learn highly irregular patterns

Random Forests (RF)
• Randomly choose some

subsets

• Build a decision tree for

each subset

subset2subset1
subset3

training data

test

example

vote by majority

predict

label1

label2, label1

decision tree1 decision tree2 decision tree3

predict

label2
predict

label2

43

Random Forests (RF)
• Randomly choose some

subsets

• Build a decision tree for

each subset

subset2subset1
subset3

training data

test

example

vote by majority

predict

label1

label2, label1

decision tree1 decision tree2 decision tree3

predict

label2
predict

label2

Random forests usually perform

worse than gradient boosted trees

44

Gradient Boosted Trees

training data

decision tree1

decision tree2

decision tree3

test
example

Training:

• Build several decision trees

• The next decision tree

minimizes the mistake made

by the previous trees

𝑥1

𝑥2

combination of 𝑥1, 𝑥2, 𝑥3

𝑥3

45

Models

Classification Regression

Binary Multi-target

Random forests ✓ ✓ 

Gradient boosted trees  ✓ ✓

46

• Classification
• Categorize a given set of data (state features) into disjoint classes

(tactics)

• Suit the tactic prediction

• Regression
• Output continuous values, e.g., 0 ≤ 𝑣𝑎𝑙𝑢𝑒 ≤ 1
• Simulate classification

• binary regression with negative examples

• multi-target regression

Binary Regression — Training

47

𝑝𝑟𝑜𝑜𝑓 𝑠𝑡𝑎𝑡𝑒

𝑓1, 𝑓2, … , 𝑓𝑛

feature extraction

Binary Regression — Training

48

features (𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐
𝑝𝑜𝑠), label 1

𝑝𝑟𝑜𝑜𝑓 𝑠𝑡𝑎𝑡𝑒

𝑓1, 𝑓2, … , 𝑓𝑛

feature extraction

𝑝𝑜𝑠_𝑡𝑎𝑐

𝑐𝑝𝑜𝑠

characterization

• positive tactic
• the tactic applied to the state

in the library

• label 1

Binary Regression — Training

49

𝑝𝑟𝑜𝑜𝑓 𝑠𝑡𝑎𝑡𝑒

𝑓1, 𝑓2, … , 𝑓𝑛

feature extraction

features (𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐
𝑛𝑒𝑔0), label 0

features (𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐
𝑛𝑒𝑔1), label 0

𝑛𝑒𝑔_𝑡𝑎𝑐0 𝑛𝑒𝑔_𝑡𝑎𝑐1

𝑐𝑛𝑒𝑔0 𝑐𝑛𝑒𝑔1

• negative tactics
• tactics unlikely to be useful

• label 0







Binary Regression — Training

50

regression trees

features (𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐
𝑝𝑜𝑠), label 1

𝑝𝑟𝑜𝑜𝑓 𝑠𝑡𝑎𝑡𝑒

𝑓1, 𝑓2, … , 𝑓𝑛

feature extraction

𝑝𝑜𝑠_𝑡𝑎𝑐

𝑐𝑝𝑜𝑠

characterization

features (𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐
𝑛𝑒𝑔0), label 0

features (𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐
𝑛𝑒𝑔1), label 0

𝑛𝑒𝑔_𝑡𝑎𝑐0 𝑛𝑒𝑔_𝑡𝑎𝑐1

𝑐𝑛𝑒𝑔0 𝑐𝑛𝑒𝑔1







Binary Regression — Prediction

Preselect 𝑡𝑎𝑐1, 𝑡𝑎𝑐2, … , 𝑡𝑎𝑐100
maybe helpful for proving 𝑝

proof state 𝑝 𝑡𝑎𝑐𝑖 𝑖∈1…100

regression trees

(𝑓1, 𝑓2, … , 𝑓𝑛 , 𝑐𝑖) 𝑖∈1…100

return tactics with highest “probability”

𝑝𝑟𝑜𝑏𝑖 𝑖∈1…100

51

𝑓1, 𝑓2, … , 𝑓𝑛 𝑐𝑖 𝑖∈1…100

feature

extraction

tactic

characterization

Tactic Characterization(1/2)

52

• Naive hash

• Features of the changed parts of the proof state

• disappear features + appear features

ℎ𝑦𝑝1

ℎ𝑦𝑝2

𝑔𝑜𝑎𝑙

ℎ𝑦𝑝1
′

ℎ𝑦𝑝2

𝑔𝑜𝑎𝑙′

𝑡𝑎𝑐disappear

features
appear

features

≠

≠

Tactic Characterization(2/2)

53

• Naive hash

• Features of changed parts of the proof state

• Features of all the before states

𝑡𝑎𝑐

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒0

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒1

𝑝𝑟𝑜𝑜𝑓_𝑠𝑡𝑎𝑡𝑒𝑛

⁞

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠0

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠1

⁞

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛

the union as the

characterization

Binary/Multi-target Regression

54

decision trees on binary

regression

(𝑓𝑒𝑎𝑡, 𝑐0)

(𝑓𝑒𝑎𝑡, 𝑐1)

⁞

(𝑓𝑒𝑎𝑡, 𝑐𝑛)

𝑠𝑐𝑜𝑟𝑒0 of 𝑡𝑎𝑐0
𝑠𝑐𝑜𝑟𝑒1 of 𝑡𝑎𝑐1

⁞

𝑠𝑐𝑜𝑟𝑒𝑛 of 𝑡𝑎𝑐𝑛

rank tactics by the scores

decision trees on multi-

target regression

𝑓𝑒𝑎𝑡

𝑠𝑐𝑜𝑟𝑒0 of 𝑡𝑎𝑐0
𝑠𝑐𝑜𝑟𝑒1 of 𝑡𝑎𝑐1

⁞

𝑠𝑐𝑜𝑟𝑒𝑛 of 𝑡𝑎𝑐𝑛

rank tactics by the scores

• 𝑓𝑒𝑎𝑡: features of a

proof state

• 𝑡𝑎𝑐: tactics

• 𝑐𝑖: characterization of

the tactic 𝑡𝑎𝑐𝑖
characterize tactics as features apply tactics as labels

Multi-target Regression — Training

• a binary regressor for each

tactic
• 𝑡𝑎𝑐1, 𝑡𝑎𝑐2, 𝑡𝑎𝑐3 in the library

• as a positive example for the

corresponding regressor

• as negative examples for the

others

55

binary

regressor

for 𝑡𝑎𝑐1

binary

regressor

for 𝑡𝑎𝑐2

binary

regressor

for 𝑡𝑎𝑐3

features

negative example: label of 𝑓 is 0

positive example: label of 𝑓 is 1

(a proof state, 𝑡𝑎𝑐2)

Multi-target Regression — Prediction

Predict a score of the

corresponding tactic by

each regressor

binary

regressor

for 𝑡𝑎𝑐1

binary

regressor

for 𝑡𝑎𝑐2

binary

regressor

for 𝑡𝑎𝑐3

features 𝑓 of a proof state

rank by the score order

𝑠𝑐𝑜𝑟𝑒1 𝑠𝑐𝑜𝑟𝑒2 𝑠𝑐𝑜𝑟𝑒3

56

Experimental Settings

• Dataset: a random subset of the Coq standard library

• Cumulative frequency: how often the tactic in the library being

presented in the first-k predictions

• Chronological evaluation: build a model for each state by

learning from the previous states

57

Results (1/4)

58

• XGBoost(XGB): a gradient

boosted tree library

• Gradient boosted trees on

different characterization

• the union of the before states >

the difference >>> naïve hash > k-

NN

Results (2/4)

59

• Regression trees use the

difference as the characterization

• Gradient boosted trees are a little

better than random forests

Results (3/4)

60

• Tasks on multi-target

regression & classification

• RF on the difference >

RF on classification >

XGB on multi-target regression

Results (4/4)

61

XGB on before states >

XGB on difference >

RF on difference >

RF on classification >

XGB on multi-target regression >

XGB on tactic hash >

k-NN

Conclusions and Future Work

• Conclusions:

• Decision trees perform much better than k-NN on tactic prediction

• Appropriate tactic characterization enhances the prediction power

• No significant difference between random forests and gradient boosted trees

• Future work:

• Improve our online random forests, see our CICM paper [Zhang etc. 2021]

• Investigate better tactic characterization, e.g., the union of all the differences

62

Online Learning (1/4)

machine learning

Online learning: quickly update the model after adding new training examples

online learning algorithms

input: disjoint features

output: labels/tactics


offline learning algorithms

deep learning

offline decision trees



✓

63

Online Learning (2/4)

Need the result of 𝑝𝑙𝑢𝑠_𝑂_𝑛

64

Online Learning (3/4)

65

Online Learning (4/4)

66

Online Random Forests (1/3)

feature

label

the feature of the parent

node exists

the feature of the parent

node does not exist

x0

x1
x2

x2 x3

y0 y1 y2 y3

y1 y3

(𝑥0, 𝑥1, 𝑥2)
input during training

67

Online Random Forests (2/3)

feature

label

the feature of the parent

node exists

the feature of the parent

node does not exist

x0

x1
x2

x2 x3

y0 y1 y2 y3

y1 x’

(𝑥0, 𝑥1, 𝑥2)
input during training

y’ y*

split the leaf under a given condition

68

Online Random Forests (3/3)

• Make a new tree when an example is passed to the forest

• with the probability of
1

𝑛

• 𝑛 is the number of trees in the forest

•
1

3
in the example

training

example

decision

tree1

decision

tree2

decision

tree3

decision

tree4

random forest

69

