
Learning Reasoning Components
AKA Learning Theorem Proving Components

Karel Chvalovský1 Jan Jakubův1,2 Miroslav Olšák2 Josef Urban1

1Czech Technical University in Prague 2University of Innsbruck



Introduction

Aim improve automated theorem proving in classical FOL with equality.

I The state-of-the-art provers, like Vampire and E, are mostly based on the
superposition calculus.

I Proof search is usually controlled by the saturation loop.
I In this loop we want to select the right clause from all unprocessed clauses.

Means improve this selection process.

1 / 21



Superposition prover

the problem of provability in classical FOL with equality

the problem of deriving the contradiction from a set of clauses

preprocessing

The superposition calculus restricts the space of derived clauses
(and still maintains the refutational completeness).

2 / 21



Saturation loop (a simplified picture)
A way how to organize proof search. We split the derived clauses into two sets
I processed clauses 𝒫 and
I unprocessed clauses 𝒰 .

𝒫 𝒰

We start with the input clauses in 𝒰 and 𝒫 = ∅.
3 / 21



Saturation loop (a simplified picture)
A way how to organize proof search. We split the derived clauses into two sets
I processed clauses 𝒫 and
I unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

3 / 21



Saturation loop (a simplified picture)
A way how to organize proof search. We split the derived clauses into two sets
I processed clauses 𝒫 and
I unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and 𝒫

3 / 21



Saturation loop (a simplified picture)
A way how to organize proof search. We split the derived clauses into two sets
I processed clauses 𝒫 and
I unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and 𝒫

It holds that “all” the important consequences of clauses in 𝒫 are in 𝒫 ∪ 𝒰 .
3 / 21



How to select a (given) clause? Traditional approach
For example, all clauses are evaluated when added to 𝒰 and we pick clauses, in a given
ratio, say 1:10, by

age prefer clauses with a smaller derivational depth, and
weight prefer (shorter) clauses containing fewer symbols.

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and 𝒫 + evaluated

Humans do not scale very well when it comes to developing new heuristics, but there
are more and more proofs available. . . ⇒ Use statistical methods!

4 / 21



ENIGMA: Machine Learning Clause Selection

I We can extract training examples from successful proofs
positive examples clauses from 𝒫 that are used in the proof, and
negative examples clauses from 𝒫 that are not used in the proof.

I We can train a machine learning model based on them and use it to evaluate
clauses from 𝒰 .

the theorem prover E
+

ML clause selection
=

Efficient learNing-based Inference Guiding MAchine (ENIGMA)

5 / 21



ENIGMA variants

There are many ENIGMA variants available, for example,
I it is possible to extract many types of features from clauses

I age, weight, . . .
I descending paths of length 3,
...

I it is possible to use various machine learning models
I decision trees,
I neural networks,
...

Note that we want to be clever, but we have to be also fast, because 𝒰 can be huge.

6 / 21



A problem with older ENIGMAs
The evaluation of a clause 𝐶 only depends on
I the clause 𝐶 itself (and the features extracted from it) and
I the conjecture we want to prove.

Advantage
I It is fast and easy to train and evaluate.

Disadvantage
I The evaluation does not depend on the context.

A set of clauses is structured data. ⇒ Use Graph Neural Networks (GNNs).

7 / 21



Graph Neural Network (GNN) used in ENIGMA

A hypergraph is produced for a set of clauses with
I three types of vertices and
I two types of (hyper)edges. 𝑞(𝑡1, 𝑡2, 𝑡3) ∨ 𝑝(𝑡1, 𝑡3)

𝑞(𝑡1, 𝑡2, 𝑡3)

𝑞 𝑡1 𝑡2 𝑡3

𝑝(𝑡1, 𝑡3)𝑝

Interpretation
node embedding

(hyper)edge message-passing between nodes

8 / 21



GNN-ENIGMA

I The evaluation is invariant under the renaming of symbols; only connections
matter not the actual names.

I The evaluation of a clause 𝐶 depends on
I the clause 𝐶,
I the conjecture we want to prove, and
I the context of other clauses.

Context
We usually use
I the first 𝑛 clauses in 𝒫 as the context,
I moreover, we do not evaluate individual clauses, but evaluate them in batches.

9 / 21



Mizar benchmark

I 57880 problems extracted from the Mizar Mathematical Library (1148 articles)
I ATPs can solve

I 25.86% by a single good strategy from E (in 10s),
I 48.10% by Vampire (in 300s),
I 50.32% by various ENIGMAs (in 2019),
I 65.65% by various ENIGMAs (in 2020), and
I 75.53% combining various approaches, details available at

https://github.com/ai4reason/ATP_Proofs

10 / 21

https://github.com/ai4reason/ATP_Proofs


A problem with the saturation loop
Observation
The evaluation of a clause is heavily influenced by the context. Hence it should change
as new clauses are derived.

Moreover, there is, for example, no way how to get rid of a poorly selected clause.

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and 𝒫 + evaluated

A simple workaround—analyze generated clauses, change the input, run again. . .
11 / 21



Leapfrogging

I Run the solver for a while and generate a large set of clauses ℒ,
I limit solver by abstract or real time,

I select only “good” clauses from ℒ and produce a smaller set 𝒮 ⊆ ℒ,
I how to produce ℒ—use only processed or all generated clauses,
I how to produce 𝒮—a premise selection problem,

I “Surprisingly”, we can use the whole ℒ as 𝒮.
I Moreover, GNN-ENIGMA does an implicit premise selection.

I run the solver on 𝒮 for a bit longer. . .
...

12 / 21



Leapfrogging experiment
Data 28k hard Mizar problems.

I Run as follows
1. use the input and stop after 300 processed clauses,
2. use 300 processed clauses as the input and stop after 500 processed clauses,
3. use 500 processed clauses as the input and run for 60s.

GNN-strategy original
(60s)

leapfrogging
(300-500-60s) union added-by-lfrg

𝐺1 2711 2218 3370 659
𝐺2 2516 2426 3393 877
𝐺3 2655 2463 3512 857
𝐺4 2477 2268 3276 799⋃︀
𝐺𝑖 4271 3958 5146 875

13 / 21



Leapfrogging experiment II

Data hard Mizar problems.

I Run as follows
1. use the input and stop after 800 processed clauses,
2. use 800 processed clauses and stop after 1600 processed clauses,
3. use 1600 processed clauses, and run for 240s.

Problem types original
(240s)

leapfrogging
(800-1600-240s) union added-by-lfrg

hard 181 211 257 76
minimized 841 940 1197 356

14 / 21



Another problem with the saturation loop

Observation
The saturation loop “suggests” that all the processed clauses should heavily interact.

Reality
In many cases there are likely reasonably defined components that
I enable different types of reasoning and
I may be solved separately and then (easily) combined.

Example
There are problems with computational and reasoning parts. For example, in numerical
calculations, computing derivatives and integrals, algebraic rewriting, . . .

Aim
We want to identify such components.

15 / 21



Identifying components

We train a GNN classifier 𝑐 based on successful proofs—a pair of clauses (𝐶𝑖, 𝐶𝑗) is
positive if a clause derived from 𝐶𝑖 and 𝐶𝑗 is used in the proof,
negative otherwise.

For unsuccessful proof attempts,
1. we evaluate all the pairs (𝐶𝑖, 𝐶𝑗) in 𝒫 using the classifier 𝑐,

I we obtain the likelihood of inferring a useful clause from the pair,
2. we produce components based on the evaluation,

I use directly the computed likelihoods, or
I use clause embeddings produced by the classifier as a byproduct.

16 / 21



Interactions between clauses as a graph
We start with a weighted complete graph
I vertices are clauses and
I weights say how likely the pairs produce a clause that will end up in a proof.

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

However, we train on positive/negative examples not on likelihoods.

We obtain a graph after pruning using a threshold.

17 / 21



Interactions between clauses as a graph
We start with a weighted complete graph
I vertices are clauses and
I weights say how likely the pairs produce a clause that will end up in a proof.

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

However, we train on positive/negative examples not on likelihoods.

We obtain a graph after pruning using a threshold.
17 / 21



Splitting into components experiment

I We train a classifier 𝑐 on 20k solved problems (|𝒫| ≤ 1000).
I For unsolved problems, we use 𝑐 and clustering to split 𝒫 into components.

ENIGMA split ENIGMA

ENIGMA

ENIGMA

Input 𝒫

ENIGMA timeout is |𝒫| ≤ 1000.

18 / 21



Producing components (clustering)

Method #clusters Newly solved problems
(out of 3000)

𝑘-means 2 67
𝑘-means 3 78
soft 𝑘-means 2 63
soft 𝑘-means 3 93
Graphviz ≤ 4 111

𝑘-means vectors into 𝑘 clusters s.t. their within-cluster variance is minimal,
soft 𝑘-means a generalization of 𝑘-means that allows overlapping clusters,

Graphviz graphs into clusters based on the modularity measure
(we also add highly connected clauses into all clusters).

19 / 21



Merging components

Experiment
We merge the generated sets of processed clauses and run a premise selection on them.

ENIGMA split ENIGMA

ENIGMA

ENIGMA

merge ENIGMA
Input 𝒫

𝒫1

𝒫2

𝒫3

ENIGMA timeout is |𝒫| ≤ 1000.

Using this setup, 51 (out of 2889) new problems are proved.

20 / 21



Conclusions

I We discussed several methods that make the clause selection in the saturation
loop more dependent on the proof state.

I We presented some initial experiments showing encouraging results of these
methods.

I However, the presented methods are rather modest, but we should keep in mind
that these methods have to reasonably fast.

21 / 21



Thank you!

Interesting Mizar proofs produced by ATPs are available at

https://github.com/ai4reason/ATP_Proofs

21 / 21

https://github.com/ai4reason/ATP_Proofs

