(Auto)Complete this Proof:
Decentralized Proof
Generation via Smart
Contracts

Jin Xing Lim1, Barnabé Monnot?, Georgios Piliouras®, and Shaowei Lin

TD) 2 Ethereum Foundation

1 Singapore University of Tech

= (=

IIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNN

Recent Update in Formalized Mathematics

‘ Source: https://www.quantamagazine.org/lean-

(Q u a nta M agaZ| n e . 28 J u Iy 202 1) ;%r;%t%r-sp/rogram—confirms—peter—scholze—proof—

L
So Commelin asked Scholze if he'd be willing to make a public ES]ump tO Blg

statement vouching for the importance of the work. Scholze agreed,

i question is by Peter Scholze of the University of Bonn, one

and on Dec. 5, 2020, he wrote a post on Buzzard’s blog.) ..) .
” S 5 widely respected mathematicians in the world. It is just

Liquid tensor experiment br project called “condensed mathematics” that he
Posted on December 52020 by xenaproject !Df the U ((
This is a guest post, written by Peter Scholze, explaining a liquid real vector space bral vear
mathematical formalisation challenge. For a pdf version of the challenge, see here. For It) : E :
s one big collaboration with
comments about formalisation, see section 6. Now over to Peter. [Fr— g
a lot of people doing what
A) the
1. The challenge they're good at tomakea |
0 . . pout.
I want to propose a challenge: Formalize the proof of the following theorem. C SII glllar H]UI]Dllth ‘ | on
Theorem 1.1 (Clausen-S.) Let () < i/ < p < 1 be real numbers, let 5 be a profinite set, N ¥ 2
and let V" be a p-Banach space. Let M (S) be the space of p'-measures on 5. Then fi brk
: W Bhavik Menta, Unmiv
Extiypaoap (MplS). V) =10

> NMIATETTATICTANTS Call ap Py THose TeCTIIC eSS TTOT real

fori = 1. functional analysis to condensed sets, knowing that

Source: https://xenaproject.wordpress.com/2020/12/05/liquid-tensor-experiment/ thev’l]_ defin ltE"l}F work in this new S'Ettil'lg.

What did we learn?

Importance of having a top-down approach where someone can state his problem statement
and it is then broken down into smaller parts for contributors to prove

- What is a good way for someone to post his/her problem statement formally and allow
contributors to work on it while having the end goal in mind?

Importance of dissemination of partial results and problems

- What is a good platform where contributors can post partial results, state the problems
encountered during the proofs and get updates (almost) immediately?

Importance of collaboration between mathematicians/computer scientists

- How can we assign verified authorship to each of the partial results?
- How can we incentivize and allocate rewards (if any) fairly to contributors?

Proposed Solution:
Blockchain Your Own (Partial) Proof

O O
& O
Provers
Formal Formal Formal Formal Formal
Proof Proof Proof Proof Proof

& ¢

Prover A Afé%?érﬁ B Prover C A?W&re% D Prover E

Al System = Sledgehammer (Isablle), TacticToe (HOL4), CogHammer (Coq), Tactician (Coq), etc 4

What is Blockchain?

Applications:
1. Finance
2. Healthcare

Decentralized Book of

Advantages:
Message 1. Decentralized
Partial Proof 2. Time-stamped
Partial Proof) verification

Partial Proof ; 3. Programmable
credit assignment
via smart contracts

Can be from anyone and cannot be changed] Encrypted and verifiable

Images’ sources:
https://medium.com/@deepbreadth/the-future-of-common-
knowledge-abaca3c04e4f

n https://www.enago.com/academy/difference-contributor-and-
P co-author/
= https://www.bravon.io/incentives-vs-gamification/

Decentralization Time-stamped verification Credit assignments

vywv

No, | am the

thor!
A\ coau / \ -#(,-
__-"-"'-_-‘ w

e ' : B .

Fast dissemination of (partial) Authorships of partial progresses Gamification to incentivise provers
results and problems from distributed collaborators can via smart contracts (e.g.

= emergence of common be verified Ethereum)

knowledge

@

New token (e.g. ForMath Token) can be used to measure contributions to formalized mathematics
6

Related Works

o)) o\0 Prior
Image source: https://www.amazon.co.jp/- OJ@ P rOJ eCtS

/en/Ci/dp/BO7N2K26Y2

Incentive Layer
(What is rewarded?)

Client Layer
(What is meaningful?)

Data Layer
(What is recorded?)

System Architecture

Deploy incentive mechanisms via smart contracts

Reward 1 sole prover via voting for main contributor
VS split reward via some allocation rule

Access and download records and contributions

Interface to present the string diagram/directed
acyclic graph built by imports declared

A

Decentralized file
system network

Image source: https://en.wikipedia.org/wiki/InterPlanetary_File_System

* Different approaches to score contributions, e.g.:
» Token-Curated Registries (TCRs):
incentivize participants to vote and rank
importance of contributions

Plug-in to the chosen proof assistant editor may be
built

Perform validity checks that cannot be handled by the
data layer

A record (on blockchain) contains:

1. Prover’s address

2. IPFS hash address of contribution

3. “imports” references

4. Contribution type (conjecture, partial proof, ...)

An lllustrative Example: Sort Program in Coq

&ctoov

1 Require Export Arith Sorted Permutation List.

2 (* Suppose all the packages above are embedded in some blocks *)
3 Export List.ListNotations.

4 Open Scope list scope.

5

6 Definition sorted := Sorted le.

7 Definition permutation := @Permutation nat.
8
9 Conjecture sort _prog :
@ forall (1 : list nat), {1' : list nat | sorted 1" /\ permutation 1°'

1}.

ctOO: Open problem asked by some “client”

Prover’s address:

N OXEf6c15b611 Ox3CF)08_7B§F3f6398.47094E36d75F52bd587 FD78d1
3ca6D24422B6 . Contribution’s address:
—l —) C8bc18e702e9 OxEf6c15b6113ca6D24422B6C8bc18e702e908A572

08A572 . “imports” references:
(Hash afidress hash addresses of Arith, Sorted, Permutation, List
of ct00.vin IPFS) . Contribution type: Conjecture

Data Layer
(What is recorded?)

An lllustrative Example: Sort Program in Coq

&ctoov

1 Require Export Arith Sorted Permutation List.

2 (* Suppose all the packages above are embedded in some blocks *)
3 Export List.ListNotations.

4 Open Scope list scope.

5

6 Definition sorted := Sorted le.

7 Definition permutation := @Permutation nat.
8
9 Conjecture sort _prog :
@ forall (1 : list nat), {1' : list nat | sorted 1" /\ permutation 1°'

1}.

ctOO: Open problem asked by some “client”

String diagram representation

Legend:

@ sort_prog o - Edge: Type
U Node (solid): Completed
proof term

Node (dotted): Incomplete
proof term

Client Layer
(What is meaningful?)

An lllustrative Example: Sort Program in Coq

&ctoov

1 Require Export Arith Sorted Permutation List.

2 (* Suppose all the packages above are embedded in some blocks *)
3 Export List.ListNotations.

4 Open Scope list scope.

5

6 Definition sorted := Sorted le.

7 Definition permutation := @Permutation nat.

8
9 Conjecture sort _prog :
@ forall (1 : list nat), {1' : list nat | sorted 1" /\ permutation 1°'

1}.

ctOO: Open problem asked by some “client”

Smart contract

if verify(sort_prog) = True:
if n({Provers}) = 1:

transfer(client, Prover, 10 tokens);

else:

Incentive Layer
(What is rewarded?)

allocation_rule(Provers, 10 tokens);

Contribution from Human

Octotv

1 Require Export ct@e. 4—
2

3 Conjecture sort prog base : {l' : list pat | sorted 1' /\ permutation 1' []}.
4

5 Conjecture sort prog IH : forall (a : nat) (1 x : list nat),

6 sorted x -> permutation x 1

7 -={1' : list nat | sorted 1' /\ permutation 1' (a :: 1)}.

8

9 Lemma sort prog :

1@ forall (1 : list nat), {l' : list nat | sorted 1' /\ permutation 1' 1}.

11 Proof. :
13 - apply sort prog base. (proof with gaps)

14 - destruct IHLl; destruct a@; eapply sort prog IH; eassumption.
15 Qed. _

ctO1: First partial proof by some prover A

String diagram representation

&
>
T
O <
® S N
- . /™ sortprog / . Legend:
== v '& Edge: Type
2D o Node (solid): Completed
(&) = proof term
§ Node (dotted): Incomplete
< proof term

Client Layer

Contribution from Al System

Octozv

1 Require Import ctel.

2

3 From Hammer Require Import Hammer.

4

5 Lemma sort prog :

6 Tforall (L : list nat), {1" : list nat | sorted 1' /\ permutation 1' 1}. e
7 Proof. (* try hammer. *) Abort.

8

9 Lemma sort prog base : {l' : list nat | sorted 1' /\ permutation 1' []}. @
18 Proof. try hammer. Defined.

11
12 Lemma sort prog IH : forall (a : nat) (1 x : list nat),
13 sorted x -> permutation x 1 6

14 -= {1' : list nat | sorted 1" /\ permutation 1' (a :: 1)}.
15 Proof. (* try hammer. *) Abort.

ct02: Contribution by Al CogHammer

= String diagram representation sort_base
S

k)

E Legend:

© sort_prog ' Edge: Type

g O 6@ Node (solid): Completed
12} proof term

® Node (dotted): Incomplete
§ (. proof term

- sort_prog_IH Node (green): Al System

Insertion Sort from Human-Al Collaboration

String diagram representation

sort_base
inserted_. sorted
E
% _
“ sort_pro sort_ind_case
Q S o(c100) rog Ct@ —»{ cto7 @
g5 N "
= O
c £
2 o perm_tail cross Legend:
< "(-U‘ L »(ct03 @ ° Edge: Type
= sort_prog_IH Node (solid): Completed
~— @ proof term
Node (dotted): Incomplete
proof term

perm_nil_sort_cons Node (green): Al System

Smart contract

if verify(sort_prog) = True:
if n({Provers}) = 1:
transfer(client, Prover, 10 tokens);
else:

Incentive Layer
(What is rewarded?)

allocation_rule(Provers, 10 tokens);

Same Theorem but Different Proof

div cong split =
fun P : list A -> Type => div cong P split split wfl split wf2
: forall P : list A -> Type,
P nil ->
(forall a : A, P (a :: nil)) ->
(forall 1s : list A, P (fst (split 1s)) -= P (snd (split 1s)) -= P 1ls) -=
forall 1s : list A, P 1s

=1 ®ctos.v r

1 Require Export ct@@ ctez cte4.

2

3 Conjecture sort prog one : forall a : nat,

4 {l" : list nat | sorted 1' /\ permutation l' [a]}.

)

6 Conjecture sort prog split : forall (ls 1' 1'@: list nat),
7 sorted 1'0 -> permutation 1'@ (fst (split nat 1s))

8 -=> sorted 1' -> permutation 1' (snd (split nat 1s))

9 -=» {l'1 : list nat | sorted 1'1 /\ permutation 1'1 1s}.
1@

11 Lemma sort prog : forall (1 : list nat),

12 {1l : list nat | sorted 1' /\ permutation 1' 1}.

13 Proof.

14 div_cong split. <« —

15 - apply sort prog base.

16 - apply sort prog one.

17 - intros; destruct H; destruct a; destruct HO®; destruct a;
18 eapply sort prog split. exact H. eassumption. exact H®. eassumption.
19 Qed.

Decentralized Way of
Building Different Proofs Collaboratively

v

sort_base True sort_base T
— —p »
inserted_sorted True

v

: o sort_prog sort_prog_one T
ST sort_ind_case ctos > >
ﬂ —Prog f : >
7\300/ 'chl HdRel_merge_fst_cons
> True

v

True
merge_sorted sorted_merge_cons
perm_tail_cross — »(ct12 »(ct14

sort_prog_split
———»(ct03 HdRel_merge_snd_cons T

sort_prog_IH
True
»(ctl7
merge_permutation permutation_split

True
—
perm_nil_sort_cons T
permutation_merge_concat

sort_base True
—» >

merge_sorted True
@ sort_prog ~/ct' 29 4’ >
N AN

permutation_merge_concat True
——»(ct24) ———m———»

sort_prog_split

True
—
permutation_split_pivot

v

v

v

Insertion Sort

Merge Sort

v

Quick Sort

All codes can be found on . 16

https://github.com/jinxinglim/coq-chain

Conclusion

Challenge: To have humans and Al systems to collaborate in formalizing mathematics

) e Tave .'ﬁ _—. - e ~ O
Proofs with SAPS | (Lawrence C Paulson, AITP 2020)

7T here s (z/rmzdy a Crend Zoecoards

i CD};:‘.?K???CD\‘_;{‘?G{ Zo full ;;9}-@@7“:‘55

Solution: Use blockchain as the platform to unite collaborators (humans/Al systems) together

Prover A

Al System B APE¥EER Al System D AN
Future Directions: (Yutaka’s induction) (Albert et al.’s LISA) (Sledgehammer)

m Ways to allocate rewards (if any) fairly to contributors (within same proo Unified proof/program synthesis

m Ways to incentivise creations of new mathematical objects (definitions/tactics/propositions)

17

Image source:
https://juliandontcheff.wordpress.com/2017/12/06/artificial-stupidity-
as-a-dba-limitation-of-artificial-intelligence/

Thank youl!

Questions and Feedback

18

	(Auto)Complete this Proof:�Decentralized Proof Generation via Smart Contracts
	Slide Number 2
	Slide Number 3
	Proposed Solution:�Blockchain Your Own (Partial) Proof
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Thank you!

