
Guiding An Automated
Theorem Prover with Neural

Rewriting
Jelle Piepenbrock, Tom Heskes, Mikoláš Janota & Josef

Urban

Automated Theorem Proving

● The given clause loop algorithm can produce many irrelevant clauses and the
the search can get derailed

● Can we guide a theorem prover to improve performance?
● The specific way we chose to try to improve performance is by using a neural

network guided rewriter to come up with lemmas that bring the two sides of an
equality “closer”.

Overall Setup

What setting are we in for Phase 1?

● We are using a dataset constructed for (Brown 2020), which has an
associated simple prover / RL environment called AIMLEAP.

● It contains ~3500 theorems that were extracted from hint-guided proof
attempts for the AIM conjecture in the Prover9 ATP.

● In phase 1, we are purely in an equational setting, where we have a goal
statement consisting of LHS and RHS, and we are rewriting both sides until
they are unifiable.

Overall Setup

RL formulation for AIMLEAP

● Tree data structure
● The neural network can move a cursor down the tree from the root and

choose one of 87 rewrite rules to apply.
● We have an RL task with 3 (cursor movements)
● 3 + 2 * 87 = 177 possible actions.
● Only reward when there is a proof as decided by AIMLEAP.
● But it’s very hard to stumble upon a proof with 177 possible actions

A simpler task

● Robinson arithmetic rewriting
● Dataset of ~5000 problems, from (Gauthier 2018).
● Task is to rewrite a Robinson arithmetic tree to a form where there are only

successor nodes (i.e. calculate the value of the expression).
● There are 7 rewrite actions and 2 cursor moves (9 total).
● We have a curriculum of problems, with heuristic for difficulty

Neural Network Architecture

● Tree neural network
● Each operation is its own multi-layer perceptron

subnetwork.
● For RA, we have the successor function, *, +, and one 0

constantr
● For the loop theory, we have L, R, T, K, a, /, \, *, and e.
● After creating an embedding, a 3-layer network decides

the action and (if applicable) the value for RL purposes.
● Cursor is also a node

How to train the network?

● We still found that it was hard for several RL algorithms to effectively learn
this relatively simple Robinson arithmetic task.

● Several baseline RL algorithms, such as PPO and ACER, did not learn
effectively.

● Inspecting the episodes and data generated, we found that even if a solution
was found for a problem, it was often “forgotten”. We also the solution could
vary a lot in length (per problem and between).

Training method

● We came up with an approach that we call 3SIL, for stratified shortest solution
imitation learning.

● Solutions are episodes that solved the RL task, i.e. lists of state-action pairs
(transitions)

 Problem 1

Problem 2

Problem 3

Solution

Solution Solution

Solution

Solution Solution Solution Solution

Training method

● We came up with an approach that we call 3SIL, for stratified shortest solution
imitation learning.

● Solutions are episodes that solved the RL task, i.e. lists of state-action pairs
(transitions)

 Problem 1

Problem 2

Problem 3

Solution

Solution

Solution

Results for RA

● Curriculum: 400 problems
per ‘level’

● 1000 episodes training per
epoch

● Test after each epoch, if >
0.95 solved, go to next
level. 400 extra problems
can now be encountered.

Comments

● From this, we concluded that this approach might be good enough to learn
the AIMLEAP environment

AIMLEAP Setup

● The randomly initiated policy almost never finds a proof, so we can end up
with a tiny amount of proofs to learn from, and starting with too few proofs
makes the model very limited

● Before training, we collected 2 million episodes, which results in about 300
theorems proved. We seeded the process with these. This proved sufficient to
find solutions for ~2200 out of 3100 training problems.

Comparison with ATPs

● Results on a held-out test set of the AIMLEAP problems
● Prover9 is the best prover.
● 1 evaluation of the model, which takes under 1 second, solves 58%
● Model with noisy evaluation, for 60s, restarted every 30 steps, finds 70.2%

and beats Waldmeister.
● Model does no backtracking

Proof overlap

End of phase 1

Extracting lemmas

● The LHS and RHS of the conjecture get rewritten in the AIMLEAP
environment according to the rewrite rules

● This means we have a set of equalities for both sides (‘‘shortcuts’’)
● We add these lemmas as the input for the ATP Prover9

Adding Lemmas

Results

● Results on test set

Conclusions

● It is possible to guide ATPs in the equational setting by using a neural network
model to suggest useful rephrasings of the conjecture

○ About 7% performance increase of Prover9
● We have shown that the 3SIL (stratified shortest solution imitation) approach

can be used to train a neural network within the AIMLEAP environment that is
strong enough to compete with provers such as Waldmeister on a specific
task.

Future Work

● Different rewriting tasks (suggestions?)
● Metalearning: can we do better than just the shortest proof?

○ Are there proofs with “more generalizable” steps?

