

# Contrastive finetuning of generative language models for informal premise selection

Jesse Michael Han, Tao Xu, Stanislas Polu, Arvind Neelakantan, and Alec Radford

## Premise selection / relevance filtering

- Premise selection:
  - Classic problem in automated theorem proving
  - Can we select the most relevant lemmas for proving a given theorem?
  - Usually attacked with neural methods in the formal setting

## Premise selection / relevance filtering

#### • Informal premise selection:

- Given a *natural language* theorem statement and a pool of *natural language* definitions/lemmas
- Can we select the most relevant references for proving that theorem?
- Pro: more in-domain for existing NLP techniques Con: no algorithmic feedback from proof search

## ProofWiki retrieval task

• **ProofWiki.** We download the public ProofWiki XML dump,<sup>4</sup> which contains a snapshot of all pages on ProofWiki. We filter pages according to manually designed rules (e.g. redirects, files, categories), and determine page type, title, contents, and references using each page's WikiMedia data structure.

**Reference retrieval and generation.** Each theorem x has a proof containing a sequence of references  $\mathbf{y} = (\mathbf{r}_1, \dots, \mathbf{r}_{|\mathbf{y}|})$ , where each reference  $\mathbf{r}_m \in \mathcal{R}$  is either a theorem, definition, or other statement (see §3). We consider two tasks: *retrieval* and *generation*.

#### Theorem

The number of primes is infinite.

#### Proof

Define a topology on the integers  $\mathbb Z$  by declaring a subset  $U\subseteq \mathbb Z$  to be an open set if and only if it is either:

the empty set  $\varnothing$ 

or:

a union of sequences S(a, b), where:

 $S\left(a,b
ight)=\left\{an+b:n\in\mathbb{Z}
ight\}=a\mathbb{Z}+b$ 

In other words, U is open if and only if every  $x \in U$  admits some nonzero integer a such that  $S(a, x) \subseteq U$ . Contrastive finetuning of autoregressive decoder-only transformers

 Use the same technique as CLIP: contrastive loss using features from a decoder-only transformer

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford <sup>\*1</sup> Jong Wook Kim <sup>\*1</sup> Chris Hallacy<sup>1</sup> Aditya Ramesh<sup>1</sup> Gabriel Goh<sup>1</sup> Sandhini Agarwal<sup>1</sup> Girish Sastry<sup>1</sup> Amanda Askell<sup>1</sup> Pamela Mishkin<sup>1</sup> Jack Clark<sup>1</sup> Gretchen Krueger<sup>1</sup> Ilya Sutskever<sup>1</sup>





#### F00D101

#### guacamole (90.1%) Ranked 1 out of 101 labels



✓ a photo of guacamole, a type of food.

× a photo of **ceviche**, a type of food.

× a photo of edamame, a type of food.

× a photo of tuna tartare, a type of food.

 $\times$  a photo of **hummus**, a type of food.





```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = np.linalg.norm(np.dot(I_f, W_i), axis=1)
T_e = np.linalg.norm(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss i + loss t)/2
Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.
```

#### Generative pre-training is useful

#### Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI alec@openai.com Karthik Narasimhan OpenAI karthikn@openai.com Tim Salimans OpenAI tim@openai.com Ilya Sutskever OpenAI ilyasu@openai.com

#### Generative pre-training is useful

A

alec

Improving Language Understanding by Generative Pre-Training

Language Models are Unsupervised Multitask Learners

Alec Radford \*1 Jeffrey Wu \*1 Rewon Child 1 David Luan 1 Dario Amodei \*\*1 Ilya Sutskever \*\*1

#### Generative pre-training is useful

#### Language Models are Few-Shot Learners

Alec R: Oper alec@ope Im

| Tom B. Broy               | wn* Benjamin      | Mann* Nick         | Ryder* Mel       | anie Subbiah*  |                |
|---------------------------|-------------------|--------------------|------------------|----------------|----------------|
| Jared Kaplan <sup>†</sup> | Prafulla Dhariwal | Arvind Neelakantan | Pranav Shyam     | Girish Sastry  | NPC .          |
| Amanda Askell             | Sandhini Agarwal  | Ariel Herbert-Voss | Gretchen Krueger | Tom Henighan   | :15            |
| Rewon Child               | Aditya Ramesh     | Daniel M. Ziegler  | Jeffrey Wu       | Clemens Winter |                |
| Christopher He            | sse Mark Chen     | Eric Sigler        | Mateusz Litwin   | Scott Gray     | Sutskever ** 1 |
| Benjar                    | nin Chess         | Jack Clark         | Christopher      | Berner         |                |
| Sam McCan                 | dlish Alec Ra     | adford Ilya S      | Sutskever I      | Dario Amodei   |                |

OpenAI

#### Domain-specific generative pre-training is also useful

Table 1: Mix and source of data involved in the WebMath dataset.

| Dataset            | Size  | Mix |
|--------------------|-------|-----|
| Github             | 23 GB | 33% |
| arXiv Math         | 10 GB | 33% |
| Math StackExchange | 2 GB  | 33% |

Table 7: Performance for various model sizes and pre-training datasets.

| Model             | Performance | Perplexity | # Tokens |
|-------------------|-------------|------------|----------|
| 160m from scratch | 28.96%      | 1.041      | 18B      |
| 160m CommonCrawl  | 32.34%      | 1.030      | 16B      |
| 160m Github       | 33.61%      | 1.030      | 16B      |
| 160m WebMath      | 34.79%      | 1.029      | 16B      |
| 700m from scratch | 31.58%      | 1.040      | 18B      |
| 700m CommonCrawl  | 39.61%      | 1.026      | 15B      |
| 700m Github       | 41.55%      | 1.025      | 15B      |
| 700m WebMath      | 42.56%      | 1.024      | 15B      |

#### Domain-specific generative pre-training is also useful

| Co-training (PACT)<br>WebMath > mix1 + tactic<br>WebMath > mix1 + mix2 + tactic | 32B<br>96B | 18B<br>71B | 0.08<br>0.09 | 0.09 | 0.94<br><b>0.91</b> | 40.0%<br><b>48.4</b> % |
|---------------------------------------------------------------------------------|------------|------------|--------------|------|---------------------|------------------------|
| <pre>Pre-training and co-training WebMath &gt; mix2 &gt; mix1 + tactic</pre>    | 32B        | 18B        | 0.08         |      | 0.93                | 46.9%                  |

Figure 5. Comparison of pre-training and co-training on mix-1 and mix-2. > denotes a pre-training step and + denotes a co-training. As an example, WebMath > mix2 > mix1 + tactic signifies a model successively pre-trained on WebMath then mix2 and finally co-trained as a fine-tuning step on mix1 and tactic. Columns mix1, mix2, tactic report the min validation loss achieved on these respective datasets.

Figure 6. Validation losses achieved in the pre-training and co-training setups without WebMath pre-training. See Figure 5 for a description of the columns and the models nomenclature used.

#### Domain-specific generative pre-training is also useful

#### **Evaluating Large Language Models Trained on Code**

Mark Chen<sup>\*1</sup> Jerry Tworek<sup>\*1</sup> Heewoo Jun<sup>\*1</sup> Qiming Yuan<sup>\*1</sup> Henrique Ponde de Oliveira Pinto<sup>\*1</sup>

We introduce Codex, a GPT language model finetuned on publicly available code from GitHub, and study its Python code-writing capabilities. A distinct production version of Codex powers GitHub Copilot. On HumanEval, a new evaluation set we release to measure functional correctness for synthesizing programs from docstrings, our model solves 28.8% of the problems, while GPT-3 solves 0% and GPT-J solves 11.4%. Fur-

## Strategy

- Generatively pre-train a language model
- Take activations for the end-of-text (EOT) token as embedding for theorems and references
- Finetune using the contrastive InfoNCE loss described above.

#### GPT-3 models

| Model Name            | $n_{\mathrm{params}}$ | $n_{\rm layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{\rm head}$ | Batch Size | Learning Rate       |
|-----------------------|-----------------------|------------------|----------------|----------------|----------------|------------|---------------------|
| GPT-3 Small           | 125M                  | 12               | 768            | 12             | 64             | 0.5M       | $6.0 	imes 10^{-4}$ |
| GPT-3 Medium          | 350M                  | 24               | 1024           | 16             | 64             | 0.5M       | $3.0 	imes 10^{-4}$ |
| GPT-3 Large           | 760M                  | 24               | 1536           | 16             | 96             | 0.5M       | $2.5 	imes 10^{-4}$ |
| GPT-3 XL              | 1.3B                  | 24               | 2048           | 24             | 128            | 1M         | $2.0 	imes 10^{-4}$ |
| GPT-3 2.7B            | 2.7B                  | 32               | 2560           | 32             | 80             | 1M         | $1.6 	imes 10^{-4}$ |
| GPT-3 6.7B            | 6.7B                  | 32               | 4096           | 32             | 128            | 2M         | $1.2 	imes 10^{-4}$ |
| GPT-3 13B             | 13.0B                 | 40               | 5140           | 40             | 128            | 2M         | $1.0 	imes 10^{-4}$ |
| GPT-3 175B or "GPT-3" | 175.0B                | 96               | 12288          | 96             | 128            | 3.2M       | $0.6 	imes 10^{-4}$ |

**Table 2.1:** Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

#### (Brown et al 2020)

#### GPT-3 models

| Model Name            | $n_{\mathrm{params}}$ | $n_{\rm layers}$ | $d_{ m model}$ | $n_{ m heads}$ | $d_{ m head}$ | Batch Size | Learning Rate        |
|-----------------------|-----------------------|------------------|----------------|----------------|---------------|------------|----------------------|
| GPT-3 Small           | 125M                  | 12               | 768            | 12             | 64            | 0.5M       | $6.0 \times 10^{-4}$ |
| GPT-3 Medium          | 350M                  | 24               | 1024           | 16             | 64            | 0.5M       | $3.0 \times 10^{-4}$ |
| GPT-3 Large           | 760M                  | 24               | 1536           | 16             | 96            | 0.5M       | $2.5 	imes 10^{-4}$  |
| GPT-3 XL              | 1.3B                  | 24               | 2048           | 24             | 128           | 1M         | $2.0 	imes 10^{-4}$  |
| GPT-3 2.7B            | 2.7B                  | 32               | 2560           | 32             | 80            | 1M         | $1.6 	imes 10^{-4}$  |
| GPT-3 6.7B            | 6.7B                  | 32               | 4096           | 32             | 128           | 2M         | $1.2 \times 10^{-4}$ |
| GPT-3 13B             | 13.0B                 | 40               | 5140           | 40             | 128           | 2M         | $1.0 	imes 10^{-4}$  |
| GPT-3 175B or "GPT-3" | 175.0B                | 96               | 12288          | 96             | 128           | 3.2M       | $0.6 	imes 10^{-4}$  |

**Table 2.1:** Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

#### (Brown et al 2020)

## Use a single model to embed both theorems and references

Unlike CLIP [8] or the BERT-based model studied in NaturalProofs [12], we use the same encoder to embed both queries (theorems) and documents (premises). Since "X is useful to prove Y" is an asymmetric relation and we use a CLIP-style symmetric cross-entropy loss, the encoder must be allowed to distinguish between theorems and references. We do this by simply formatting the inputs to the transformer as

Theorem title: <title> <newline> Theorem statement: <statement>

Reference title: <title> <newline> Reference statement: <statement>.

#### Training details

- Use batch size of N=2048
- Sample N theorems from train set, then sample a reference from each of the theorems to create the batch
   This way we don't contrast references from the same theorem
- Train for ~7000 steps using Adam, 0.2X the pre-training learning rate, using 32 V100 GPUs

#### How does generative pre-training affect retrieval performance?

- No pretraining. The model is randomly initialized and only learns theorem/premise representations through contrastive training.
- **GPT-3 style pretraining.** The model is pretrained for 300B tokens on the same data (a mix of filtered CommonCrawl, WebText, books, and Wikipedia) as GPT-3 [2].
- WebMath pretraining. Starting from the final snapshot of the previous model, we train for another 72B tokens on the WebMath dataset [7], comprising a mix of math arXiv, Python, Math StackExchange, Math Overflow, and PlanetMath.

We refer to our methodology for informal premise selection as contrastive theorem-premise training (CTPT) and denote the three models above by ctpt-no-pretrain, ctpt-webtext, and ctpt-webmath.

|                  | recall@10 | recall@100 | avgp@100 | full@100 | full@1K |
|------------------|-----------|------------|----------|----------|---------|
| BERT             | 20.27     | 59.44      | 14.01    | 27.39    | 70.52   |
| ctpt-no-pretrain | 23.76     | 54.01      | 11.91    | 23.75    | 56.32   |
| ctpt-webtext     | 34.39     | 65.45      | 17.97    | 34.76    | 64.51   |
| ctpt-webmath     | 36.92     | 70.39      | 21.53    | 39.49    | 73.52   |

Our main results are displayed in Table 1. The model ctpt-webmath outperforms the previous state-of-the-art on all metrics. Our models also utilize 43% fewer parameters since the BERT-based model embeds theorems and references with separate copies of bert-base-cased (110M params). It is possible that the webtext data contains ProofWiki, but WebMath does not and we consider the significant performance gap between ctpt-webtext and ctpt-webmath to be of primary interest. We speculate that the models studied in [12] are severely undertrained due to using only 200 randomly sampled negatives for each positive example.

|                                                          | ProofWiki                                      |                                              |                                         |                                                |                                                |                                                |  |  |
|----------------------------------------------------------|------------------------------------------------|----------------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--|--|
|                                                          |                                                | mAP                                          | R@10                                    | <b>R@100</b>                                   | Full@10                                        | Full@100                                       |  |  |
| Random<br>Frequency<br>TF-IDF                            |                                                | 0.04<br>3.38<br>6.19                         | 0.00<br>5.90<br>10.27                   | 0.19<br>24.30<br>23.09                         | 0.00<br>0.44<br>4.14                           | 0.00<br>2.29<br>9.43                           |  |  |
| BERT (P+S)<br>BERT (P/S)                                 | +pair<br>+joint<br>+pair<br>+joint             | 13.54<br>32.71<br>16.82<br><b>36.75</b>      | 20.10<br>37.59<br>23.73<br><b>42.45</b> | 58.75<br>73.72<br>63.75<br><b>75.90</b>        | 6.17<br>17.71<br>7.31<br><b>20.35</b>          | 31.28<br>48.90<br>38.50<br><b>50.22</b>        |  |  |
|                                                          | recall@1                                       | l0 reca                                      | all@100                                 | avgp@10                                        | 00 full@10                                     | 0 full@1K                                      |  |  |
| BERT<br>ctpt-no-pretrain<br>ctpt-webtext<br>ctpt-webmath | <b>20.27</b><br>23.76<br>34.39<br><b>36.92</b> | <b>59.</b> 4<br>54.0<br>65.4<br><b>70.</b> 3 | <b>44</b><br>)1<br>!5<br><b>39</b>      | <b>14.01</b><br>11.91<br>17.97<br><b>21.53</b> | <b>27.39</b><br>23.75<br>34.76<br><b>39.49</b> | <b>70.52</b><br>56.32<br>64.51<br><b>73.52</b> |  |  |



### **Future directions**

- Retrieval-augmented language modeling of proofs
  - Can we improve informal (theorem, proof) perplexity when additionally conditioned on retrieved informal premises?
  - Can we improve formal (theorem, proof) perplexity when additionally conditioned on retrieved informal premises?
  - Can we improve formal theorem-proving pass-rate when conditioned on informal premises (either per-theorem or per-proofstep?)
- Re-ranking to address high-recall/low-precision behavior
  - Zero/few-shot re-ranking using full-size GPT-3
  - Zero/few-shot re-ranking using Webmath-finetuned GPT-3
- Scale?
  - Model size?
  - Batch size --- against current wisdom, doesn't seem to help too much



## Q & A