G

OpenAl

Contrastive finetuning of generative language
models for informal premise selection

Jesse Michael Han, Tao Xu, Stanislas Polu, Arvind Neelakantan, and Alec Radford

Premise selection / relevance filtering

e Premise selection:
o Classic problem in automated theorem proving
o Can we select the most relevant lemmas for proving a
given theorem?
o Usually attacked with neural methods in the formal setting

Premise selection / relevance filtering

e Informal premise selection:
o Given a natural language theorem statement and a pool of
natural language definitions/lemmas
o Can we select the most relevant references for proving that
theorem?

e Pro: more in-domain for existing NLP techniques
Con: no algorithmic feedback from proof search

ProofWiki retrieval task

ProofWiki. We download the public ProofWiki XML dumpﬂ which contains a snapshot of all
pages on ProofWiki. We filter pages according to manually designed rules (e.g. redirects, files,
categories), and determine page type, title, contents, and references using each page’s WikiMedia
data structure.

Reference retrieval and generation. Each theorem x has a proof containing a sequence of references
,T|y|), Where each reference r,,, € R is either a theorem, definition, or other statement
(see §3). We consider two tasks: retrieval and generation.

Theorem

The number of primes is infinite.

Proof

Define a topology on the integers Z by declaring a subset U C Z to
be an open set if and only if it is either:

the empty set &

or:

a union of sequences S (a, b), where:

S(a,b)={an+b:neZ

In other words, U is open if and only if every & € U admits some non-
zero integer a such that S (a,z) C U.

Contrastive finetuning of autoregressive decoder-only transformers

e Use the same technique as CLIP: contrastive loss using
features from a decoder-only transformer

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford "' Jong Wook Kim"“! Chris Hallacy' Aditya Ramesh! Gabriel Goh' Sandhini Agarwal '
Girish Sastry! Amanda Askell! Pamela Mishkin' Jack Clark' Gretchen Krueger' Ilya Sutskever '

pepper the
aussie pup

Image
Encoder

2. Create dataset classifier from label text

a photo of . Text
a {object}. Encoder

3. Use for zero-shot prediction

Image
Encoder

a photo of
adog.

FOOD101

guacamole (90.1%) Ranked

ceviche

edamame

nummus

pepper the
aussie pup

Image
Encoder

theorems

premises

image_encoder(I)
text_encoder(T)

ultl dal embeddl 1, d_e]
np.linalg.norm(np.dot(I_f, W_1i), axis=1)
np.linalg.norm(np.dot(T_f, W_t), axis=1)

1rwi

sine similaritie 1; nj

nb.doi(I_e; T_e.T) * np.éxp(t)

scaled

logits =

1 10S Tunction

np.arange(n)

cross_entropy_loss(logits, labels, axis=8)
cross_entropy_loss(logits, labels, axis=1)
(loss_i + loss_t)/2

labels
loss_i
loss_t
loss

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.

Generative pre-training is useful

Improving Language Understanding
by Generative Pre-Training

Alec Radford Karthik Narasimhan Tim Salimans Ilya Sutskever
OpenAl OpenAl OpenAl OpenAl
alec@openai.com karthikn@openai.com tim@openai.com ilyasu@openai.com

Generative pre-training is useful

Improving Language Understanding
by Generative Pre-Training

Language Models are Unsupervised Multitask Learners

Alec Radford *' Jeffrey Wu "' Rewon Child' David Luan' Dario Amodei ™' Ilya Sutskever ™'

Generative pre-training is useful

Im Language Models are Few-Shot Learners

Tom B. Brown"” Benjamin Mann” Nick Ryder” Melanie Subbiah*
Alec R: | " sy g i
Ope: Jared Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
alec@ope TS

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter

N b e |
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray Sutskever

Jack Clark

Benjamin Chess Christopher Berner

Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

OpenAl

Domain-specific generative pre-training is also useful

Table 1: Mix and source of data involved in the WebMath dataset.

Github 23 GB
arXiv Math 10 GB

Math StackExchange | 2 GB

Table 7: Performance for various model sizes and pre-training datasets.

160m from scratch
160m CommonCrawl
160m Github

160m WebMath
700m from scratch
700m CommonCrawl
700m Github

700m WebMath

Perplexity

28.96%
32.34%
33.61%
34.79%
31.58%
39.61%
41.55%
42.56 %

Domain-specific generative pre-training is also useful

Co-training (PACT)
WebMath > mixl + tactic 32B 18B 0.08 0.94 40.0%
WebMath > mixl + mix2 + tactic 96B 71B 0.09 0.09 0.91 48.4%

Pre-training and co-training
WebMath > mix2 > mixl + tactic 32B 18B 0.08 0.93 46.9%

Figure 5. Comparison of pre-training and co-training on mix-1 and mix-2. > denotes a pre-training step and + denotes a co-training.
As an example, WebMath > mix2 > mixl + tactic signifies a model successively pre-trained on WebMath then mix2 and
finally co-trained as a fine-tuning steponmixl and tactic. Columns mixl, mix2, tactic report the min validation loss achieved

on these respective datasets.

Co-training
mixl + tactic 32B 0.11 1:12
mixl + mix2 + tactic 96B 0.10 0.11 1.07

Pre-training and co-training
mix2 > mixl + tactic 32B 26B 0.11 1.09

Figure 6. Validation losses achieved in the pre-training and co-training setups without WebMath pre-training. See Figurc[ﬂ for a
description of the columns and the models nomenclature used.

Domain-specific generative pre-training is also useful

Evaluating Large Language Models Trained on Code

Mark Chen"' Jerry Tworek ' Heewoo Jun®' Qiming Yuan® ' Henrique Ponde de Oliveira Pinto "'

We introduce Codex, a GPT language model fine-
tuned on publicly available code from GitHub,
and study its Python code-writing capabilities.
A distinct production version of Codex powers
GitHub Copilot. On HumanEval, a new evalua-
tion set we release to measure functional correct-
ness for synthesizing programs from docstrings,
our model solves 28.8% of the problems, while
GPT-3 solves 0% and GPT-J solves 11.4%. Fur-

Strategy

e Generatively pre-train a language model

e Take activations for the end-of-text (EOT) token as embedding for
theorems and references

e Finetune using the contrastive InNfoNCE loss described above.

GPT-3 models

Model Name Nparams Mlayers Omodel Mheads @head Batch Size Learning Rate

GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 101
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x10°%
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 % 10"
GPT-3 XL [.3B 24 2048 24 128 IM 2.0:%10~%
1
1
1
1

GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 10~
GPT-36.7B 6.7B 32 4096 32 128 M 1.2 x 10~
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or "GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 10~

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

(Brown et al 2020)

GPT-3 models

Model Name Nparams Mlayers Omodel Mheads @head Batch Size Learning Rate

GPT-? MLdmm / - 2 /
GPT-3 Large 76()[\1 24 96 () SM
GPT-3 XL 1.3B 2¢ - - 128 IM
GPT-32.7B 2.7B 32 3 3: 30 IM
GPT-36.7B 6.7B 32 128 2M
GPT-3 13B 13.0B - 51¢ 4() 128 2M
GPT-3 175B or “GPT-3" 175.0B)2 96 128 3.2M

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.

(Brown et al 2020)

Use a single model to embed both theorems and references

Unlike CLIP [8] or the BERT-based model studied in NaturalProofs [12], we use the same
encoder to embed both queries (theorems) and documents (premises). Since “X is useful to
prove Y7 is an asymmetric relation and we use a CLIP-style symmetric cross-entropy loss, the
encoder must be allowed to distinguish between theorems and references. We do this by simply
formatting the inputs to the transformer as

Theorem title: <title> <newline> Theorem statement: <statement>

Reference title: <title> <newline> Reference statement: <statement>.

Training details

e Use batch size of N=2048

e Sample N theorems from train set, then sample a reference from
each of the theorems to create the batch
o This way we don't contrast references from the same theorem

e Train for ~7000 steps using Adam, 0.2X the pre-training learning
rate, using 32 V100 GPUs

How does generative pre-training affect retrieval performance?

e No pretraining. The model is randomly initialized and only learns theorem/premise
representations through contrastive training.

e GPT-3 style pretraining. The model is pretrained for 300B tokens on the same data
(a mix of filtered CommonCrawl, WebText, books, and Wikipedia) as GPT-3 [2].

e WebMath pretraining. Starting from the final snapshot of the previous model, we
train for another 72B tokens on the WebMath dataset [7], comprising a mix of math
arXiv, Python, Math StackExchange, Math Overflow, and PlanetMath.

We refer to our methodology for informal premise selection as contrastive theorem-premise
training (CTPT) and denote the three models above by ctpt-no-pretrain, ctpt-webtext,
and ctpt-webmath.

recall@10 recall@100 avgp@100 full@100 full@lK

BERT 20.27 59.44 14.01 27.39 70.52
ctpt-no-pretrain 23.76 54.01 11.91 23.75 56.32
ctpt-webtext 34.39 65.45 17.97 34.76 64.51

ctpt-webmath 36.92 70.39 21.53 39.49 73.52

Our main results are displayed in Table 1. The model ctpt-webmath outperforms the
previous state-of-the-art on all metrics. Our models also utilize 43% fewer parameters since the
BERT-based model embeds theorems and references with separate copies of bert-base-cased
(110M params). It is possible that the webtext data contains ProofWiki, but WebMath does
not and we consider the significant performance gap between ctpt-webtext and ctpt-webmath
to be of primary interest. We speculate that the models studied in [12] are severely undertrained
due to using only 200 randomly sampled negatives for each positive example.

ProofWiki
mAP R@10 R@100 Full@10 Full@100

Random | 0.04 0.00 0.19 0.00 0.00
Frequency | 3.38 590 24.30 0.44 229
TF-IDF | 6.19 10.27 23.09 4.14 9.43

+pair | 13.54 20.10 58.75 6.17 31.28
+!'0int 32,71 37159 1372 17.71 48.90

BERT (P+S)

+pair | 16.82 ; 63.75 7:31

BERT (P/S) Fomt

recall@10 recall@100 avgp@100 full@100 full@lK

BERT 20.27 59.44 14.01 27.39 70.52
ctpt-no-pretrain 23.76 54.01 11.91 23.75 56.32
ctpt-webtext 34.39 65.45 17.97 34.76 64.51

ctpt-webmath 36.92 70.39 21.53 39.49 73.52

pre-computed

S(x’ r) p(x’ {r} U y') t‘mbcdding'_s'

T r .o
fg(x) go(r) fo(x) ga(r)
? L ! ! Decoder
BERT BERT BERT BERT e

fo g9

t t

X

[B]

| s

{r}Uy.
(a) Basic scoring (b) Pairwise: Training (c) Pairwise: Inference (d) Joint: Training & Inference

Future directions

e Retrieval-augmented language modeling of proofs
o Can we improve informal (theorem, proof) perplexity when additionally
conditioned on retrieved informal premises?
o Can we improve formal (theorem, proof) perplexity when additionally
conditioned on retrieved informal premises?
o Can we improve formal theorem-proving pass-rate when conditioned on
informal premises (either per-theorem or per-proofstep?)

e Re-ranking to address high-recall/low-precision behavior
o Zero/few-shot re-ranking using full-size GPT-3
o Zero/few-shot re-ranking using Webmath-finetuned GPT-3

e Scale?
o Model size?
o Batch size --- against current wisdom, doesn't seem to help too much

