Graph Neural Networks for Dynamic Scheduling of SMT Solvers

Jan Hůla, David Mojžíšek, Mikoláš Janota

Satisfiability Modulo Theories

- Deals with a decision problem for logical formulas written in FOL with dedicated theory.
- Various solvers have been developed for different theories.

```
(set-info :smt-lib-version 2.6)
(set-logic QF_NRA)
(set-info :category "crafted")
(set-info :status sat)
(declare-fun a () Real)
(assert (and (>= a 3)
   (not (>= (* a 2) 3))))
(check-sat)
(exit)
```

Solver portfolios

- Popularized by SATzilla (E. Nudelman et al., 2004)
- Empirical hardness models models trained to predict runtime of an algorithm on a given input.
- Because of the uncertainty in the predictions, schedule of solvers may be more effective then solver selection.

Comparing solvers

- SMT-COMP competition of solvers on in different benchmark sets
- PAR2 penalized average runtime (with penalization 2*timeout)
- Virtual best solver gives an upper bound; picks the best solver on every instance.

Related work

- MachSMT: A Machine Learning-based Algorithm Selector for SMT Solvers (Scott et al., 2020)
- BOW representation of formulas
- Boosted trees as empirical hardness model

MachSMT - results

MachSMT - results

Selection of benchmark sets

- Requirements:
 - enough examples
 - a gap between the best solver/MachSMT and the virtual best solver

# of problems	# of solvers	Timeout (s)
2654	9	2400
5659	7	2400
5659	23	60
4741	25	300
	# of problems 2654 5659 5659 4741	# of problems# of solvers2654956597565923474125

Encoding of SMT formulas

Our model

• GCN (Kipf et al., 2016), 6 layers

Results for solver selection

- GNN beats MachSMT description
- Random schedule beats both
- Most problems are solved in few seconds at least by some solver.

POW single	PAR-2 impr.	117.10%
bow single	solved	2343
CNN single	PAR-2 impr.	231.19%
GININ Single	solved	2403
Dandam sahadula	PAR-2 impr.	269.33%
Kanuoni scheuule	solved	2494

Solver scheduling

• Basic schedule: order solvers according to the predictions of the runtime

ROW single	PAR-2 impr.	117.10%	
bow single	solved	2343	
CNN single	PAR-2 impr.	231.19%	
GIVIN Single	solved	2403	
Dandam sehadula	PAR-2 impr.	269.33%	
Kanuom scheuule	solved	2494	
Solver ordering	PAR-2 impr.	913.05%	
Solver ordering	solved	2494	

Prediction of solving time distribution

- We split the available runtime to multiple intervals and train the GNN to classify in which interval the problem will be solved by a given solver.
- The predictions are "probabilistic".
- Can compute approximate expected runtime

Scheduling solvers using expected runtime

Interval lengths

- "In empirical benchmark sets, the probability that a problem will be solved decreases exponentially with time" (Pimpalkhare, 2021)
- The exponent is different for different solvers
- We estimate these exponents from a training set and split than available time to chunks of exponentially increasing lengths.

Results

Results

Benchmark		QF-NRA	UFNIA	UFNIA-CONF	TPTP
Best Solver	solver	Z3	CVC4	-	Vampire
	solved	2120	3093	2494	3204
VBS	solved	2516	3339	3118	3564
BOW single	PAR-2 impr.	117.10%	-0.64%	0.32%	13.56%
	solved	2343	3074	2586	3315
GNN single	PAR-2 impr.	231.19%	1.8%	56.73%	18.23%
	solved	2403	3085	2644	3320
Random schedule	PAR-2 impr.	269.33%	-21.62%	69.59%	-15.05%
	solved	2494	3053	2812	3266
Solver ordering	PAR-2 impr.	913.05%	8.30%	88.59%	6.84%
	solved	2494	3053	2812	3266
Dynamic schedule	PAR-2 impr.	1162.87 %	76.91 %	113.54%	51.92%
	solved	2498	3245	2891	3388

Final remarks

- Exploiting dataset correlations vs OOD generalization.
- Future work: adapting for distribution shift.