
Creation of a modular proof
assistant engine for a logic e-tutor

Jakub Dakowski, Aleksandra Draszewska, Barbara Adamska,
Dominika Juszczak, Łukasz Abramowicz, Robert Szymański

Adam Mickiewicz University in Poznań (Poland) · tiny.one/larch

Conference on Artificial Intelligence and Theorem Proving 2021

http://tiny.one/larch


Larch is a modular system created in the 
POP paradigm which assists students in 
making formal proofs.



Plugin Oriented Programming (POP)

Plugin Oriented Programming is a new programming paradigm
in which the codebase splits into modular, interchangeable and 
independent plugin subsystems with a central hub.

It lays emphasis on plugins, modularity, namespaces and isolation
of development and testing. Developing large codebases often requires
a shift to more modular structure over time – POP allows you to create
a project that is modular and pluggable from the very beginning.

Macey, T., Hatch, T. (2019). Making Complex Software Fun And Flexible With Plugin Oriented Programming.
Podcast .__init__. https://pythonpodcast.com/plugin-oriented-programming-episode-240/.



Two main groups of Larch users

Learners Contributors



Larch is made
in Python

This lowers the entry threshold
and provides better development 

opportunities.
Python is also reflective, which is important.

PROBLEM

There is no pattern matching
mechanism in Python.

SOLUTIONS

● Sentence class with methods 
implementing most useful mechanisms.

● Structural Pattern Matching is coming 
to Python (Moisset, 2020).

Moisset , D. F. (2020). PEP 636 – Structural Pattern Matching: 
Tutorial. Python.org. https://www.python.org/dev/peps/pep-0636/.



Implementation of a POP system

➔ Built-in module importlib enables the 
creation of a system inspired
by Macey and Hatch (2019).

➔ Template files are used to define
the shape of a socket.

➔ Exception handling is done mostly by 
the engine.

➔ Included libraries allow for a more 
concise code.

Macey, T., Hatch, T. (2019). Making Complex Software Fun And Flexible With Plugin Oriented Programming.
Podcast .__init__. https://pythonpodcast.com/plugin-oriented-programming-episode-240/.



Example of a template file



Sockets in Larch



Defining a notation
Lexicon socket



Defining new rules
Formal socket





Hint generation
and mistake correction

Assistant socket



Discussion

The (near) future of Larch

By the end of September we want Larch to be publicly 
available as a downloadable local web app. If we
succeed, three months later Larch will assist teaching logic 
for cognitive science students at our faculty.

This will allow us to empirically assess the effectiveness of 
using Larch as an e-tutor for teaching the analytic tableaux 
method.

It is also important to improve the hint generation 
algorithms. This also will be aided by empirical data.

Achievements

It appears that it is possible to use plugin system to 
encompass multiple proof systems in one software.

Similar methods can be used to create environments
for other applications both in Logic and in AI.

Currently, both plugins and the engine can be recycled for 
other purposes (such as being classic software libraries).



Discussion

Vision

In the future this paradigm might encourage the 
development of a universal architecture of logic
and AI software. 

This might promote compatibility between different 
libraries which would allow almost seamless 
interchangeability and code reusability.

Future works

The limitations of this approach aren’t well known,
as this paradigm is just being created. It is worth to check, 
whether using it affects application performance and 
security.

Such design creates a need for diverse socket libraries that 
can be reused by other plugins.

The socket architecture also should be improved
to allow more elasticity. 

The plugin management system could also be 
enriched with certain features.



Sources
David Beazley. Writing parsers and compilers with ply. PyCon’07, 2007.

c0fec0de. anytree, Dec 2019.

Christa Cody, Behrooz Mostafavi, and Tiffany Barnes. Investigation of the influence of hint type on problem solving behavior in a logic proof tutor. In International 
Conference on Artificial Intelligence in Education, pages 58–62. Springer, 2018. https://link.springer.com/chapter/10.1007/978-3-319-93846-2_11.

Cristiano Galafassi, Fabiane FP Galafassi, Eliseo B Reategui, and Rosa M Vicari. Evologic: Intelligent tutoring system to teach logic. In Brazilian Conference on Intelligent 
Systems, pages 110–121. Springer, 2020. https://link.springer.com/chapter/10.1007/978-3-030-61377-8_8.

Jacob M Howe. Two loop detection mechanisms: a comparison. In International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pages 
188–200. Springer, 1997.

Antonia Huertas. Ten years of computer-based tutors for teaching logic 2000-2010: Lessons learned. In International Congress on Tools for Teaching Logic, pages 131–140. 
Springer, 2011. https://link.springer.com/chapter/10.1007/978-3-642-21350-2_16.

Tobias Macey and Thomas Hatch. Making complex software fun and flexible with plugin oriented programming. Podcast.__init__, 2019. 
https://www.pythonpodcast.com/plugin-oriented-programming-episode-240/.

Moisset , D. F. (2020). PEP 636 – Structural Pattern Matching: Tutorial. Python.org. https://www.python.org/dev/peps/pep-0636/.

Raymond M. Smullyan. First-order logic. Dover, 1995.

Adam Tauber. exrex, Jun 2017.


