
Mining counterexamples for wide-signature
algebras with an Isabelle server

Wesley Fussner, Boris Shminke

Laboratoire J.A. Dieudonné, CNRS, and Université Côte d’Azur, France

6 Sep 2021



What is a residuated binar

Binar (magma, groupoid) — a set with a binary operation ·
For residuation we add a lattice structure:

x ∧ y = y ∧ x

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ y = y ∨ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x



What is a residuated binar (RB)

A binar with a lattice stucture (x ≤ y ⇐⇒ x = x ∧ y) and two
residuation operations:

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z



Some distributive laws hold in all RBs

x · (y ∨ z) = x · y ∨ x · z
(x ∨ y) · z = x · z ∨ y · z
x\(y ∧ z) = x\y ∧ x\z
(x ∧ y)/z = x/z ∧ y/z

x/(y ∨ z) = x/y ∧ x/z

(x ∨ y)\z = x\z ∧ y\z



And some don’t (in general)

x · (y ∧ z) = x · y ∧ x · z
(x ∧ y) · z = x · z ∧ y · z
x\(y ∨ z) = x\y ∨ x\z
(x ∨ y)/z = x/z ∨ y/z

(x ∧ y)\z = x\z ∨ y\z
x/(y ∧ z) = x/y ∨ x/z



But some distributivity laws can

I follow from a combination of others

I under special circumstances

I Fussner, W., Jipsen, P. Distributive laws in residuated binars.
Algebra Univers. 80, 54 (2019)

https://doi.org/10.1007/s00012-019-0625-1
https://doi.org/10.1007/s00012-019-0625-1


Example from cited paper

If (x ∧ y) ∨ z = (x ∧ z) ∨ (y ∧ z) (distributive lattice) then:

(x ∨ y)/z = x/z ∨ y/z

(x ∧ y)\z = x\z ∨ y\z
=⇒ x\(y ∨ z) = x\y ∨ x\z



Non-example

If (x ∧ y) ∨ z = (x ∧ z) ∨ (y ∧ z) then there is a counter-example
for:

x · (y ∧ z) = x · y ∧ x · z
(x ∧ y) · z = x · z ∧ y · z

=⇒ x\(y ∨ z) = x\y ∨ x\z



Open Problem

In a residuated binar which of the following distributivity laws
follows from some combination of others:

x · (y ∧ z) = x · y ∧ x · z (1)

(x ∧ y) · z = x · z ∧ y · z (2)

x\(y ∨ z) = x\y ∨ x\z (3)

(x ∨ y)/z = x/z ∨ y/z (4)

(x ∧ y)\z = x\z ∨ y\z (5)

x/(y ∧ z) = x/y ∨ x/z (6)



Problem

I 6 non-trivial distributivity laws

I (25 − 1)× 6 of possible implications between them

I adding: · commutativity/associativity, lattice modularity,
involution operation, ...

I often a counter-examples exists



Why so many?

I if 1,2,3,4,5 doesn not imply 6

I then neither 1,2,3,4 implies 6

I but we don’t know what is true in the beginning

I finding counter-examples for more general statements is harder



Task

I thousands of hypotheses

I counter-examples structure is important for understanding

I we want to check as many hypotheses as possible

I starting with the least general ones



How to find provable hypotheses?

I encode the hypothsis into some formal language

I give it to one’s favourite counter-examples finder:

I Mace4, Paradox, Kodkod, ...

I wait for a couple of minutes and repeat



How to find provable hypotheses?

I give it to one’s favourite counter-examples finder which one?

I wait for a couple of minutes why hours or days?

I repeat but we have thousands of candidates to check



How to find provable hypotheses: Isabelle Platform

I uses a relatively simple language for encoding theories

I provides an interface (through Kodkod) to SMT solvers

I Isabelle server runs solving tasks in parallel

https://github.com/inpefess/residuated-binars/blob/master/involution/task10/T88.thy


Isabelle

I is overall great but

I is written in StandardML and Scala (I used Python for
generating theory files)

I it’s server has only TCP API (not even HTTP!)



Solution

I write a Python client to Isabelle server

I write scrips for generating and processing Isabelle theory files

I parse Isabelle server log to produce tikz representation of
lattice reducts of counter-examples

I come up with new hypotheses to prove

https://github.com/inpefess/isabelle-client
https://github.com/inpefess/residuated-binars
https://github.com/inpefess/residuated-binars/blob/master/involution/task10/isabelle.out


Isabelle theory file generated by Python script

theory T88
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, meet(y, z)) = meet(mult(x, y), mult(x, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(join(x, y), z) = join(over(x, z), over(y, z))) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))) &
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(x, join(y, z)) = join(undr(x, y), undr(x, z)))
"
nitpick[card nat=10,timeout=86400]
oops
end



Isabelle server response

155

NOTE {"percentage":100,

"task":"1efed98a-801b-4bc8-9ea1-50b38d1d966d","message":

"theory Draft.T92 100%","kind":"writeln","session":"",

"theory":"Draft.T92"}

215033

FINISHED {"ok":true,"errors":[],"nodes":[{"messages"

:[{"kind":"writeln","message":"Nitpicking formula...",

"pos":{"line":26,"offset":1347,"end_offset":1354,"file":

"/workdir/boris/projects/residuated-binars/residuated_binars/task10/T114.thy"

}},{"kind":"writeln","message":

"Warning: The conjecture either trivially holds for the given scopes or lies\noutside Nitpick’s supported fragment; only potentially spurious\ncounterexamples may be found"

,"pos":{"line":26,"offset":1347,"end_offset":1354,"file":

"/workdir/boris/projects/residuated-binars/residuated_binars/task10/T114.thy"

}},{"kind":"writeln","message":"Nitpick found a potentially spurious counterexample:\n

Free variables:\n invo =\n (\\<lambda>x. _)\n

(0 := 7, 1 := 6, 2 := 5, 3 := 4, 4 := 3, 5 := 2, 6 := 1, 7 := 0,\n 8 := 9, 9 := 8)\n

join =\n (\\<lambda>x. _)\n ((0, 0) := 0, (0, 1) := 5, (0, 2) := 0, (0, 3) := 0, (0, 4) := 0,\n (0, 5) := 5, (0, 6) := 0, (0, 7) := 0, (0, 8) := 0, (0, 9) := 0,\n (1, 0) := 5, (1, 1) := 1, (1, 2) := 1, (1, 3) :=



· > a b c d e f g h ⊥
> > g > > > g g a g ⊥
a a ⊥ a a a ⊥ ⊥ a ⊥ ⊥
b > g > > > g g a g ⊥
c d g d d d g g h g ⊥
d d g d d d g g h g ⊥
e a ⊥ a a a ⊥ ⊥ a ⊥ ⊥
f a ⊥ a a a ⊥ ⊥ a ⊥ ⊥
g g g g g g g g ⊥ g ⊥
h h ⊥ h h h ⊥ ⊥ h ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥



>

a b

e c

d

gh

f

⊥



Results

In a residuated binar (with or without involution), none of the
following distributivity laws follows from any combination of others:

x · (y ∧ z) = x · y ∧ x · z
(x ∧ y) · z = x · z ∧ y · z
x\(y ∨ z) = x\y ∨ x\z
(x ∨ y)/z = x/z ∨ y/z

(x ∧ y)\z = x\z ∨ y\z
x/(y ∧ z) = x/y ∨ x/z



Results

I all examples in the general case are non-modular

I for modular case Isabelle fails to find counter-examples of size
up to 14 for some assumptions

I results from Fussner&Jipsen paper might be generalisable to
the modular case



Was it easy?

I running on three Linux machines, the largest having 180 CPU
cores (Intel® Xeon® Gold 6254 3.10GHz) and 832 GB of
RAM

I about two weeks of wall-time computations

I filing a kernel bug report to one of the servers’ sellers

I the largest model is of cardinality 10



Conclusions

I sometimes using newer software helps solving open problems
in mathematics

I collaboration of mathematicians and computer scientists
might be fruitful

I ITPs are not only for formalizations



Thank you for your attention!

Discussion time!


