Mining counterexamples for wide-signature algebras with an Isabelle server

Wesley Fussner, Boris Shminke

Laboratoire J.A. Dieudonné, CNRS, and Université Côte d'Azur, France
6 Sep 2021

What is a residuated binar

Binar (magma, groupoid) - a set with a binary operation . For residuation we add a lattice structure:

$$
\left.\begin{array}{rl}
x & \wedge y=y \wedge x \\
x \wedge(y \wedge z) & =(x \wedge y) \wedge z \\
x \vee y=y \vee x
\end{array}\right) ~ \begin{aligned}
& x \vee(y \vee z)=(x \vee y) \vee z \\
& x \wedge(x \vee y)=x \\
& x \vee(x \wedge y)=x
\end{aligned}
$$

What is a residuated binar (RB)

A binar with a lattice stucture $(x \leq y \Longleftrightarrow x=x \wedge y)$ and two residuation operations:

$$
x \cdot y \leq z \Longleftrightarrow x \leq z / y \Longleftrightarrow y \leq x \backslash z
$$

Some distributive laws hold in all RBs

$$
\begin{array}{r}
x \cdot(y \vee z)=x \cdot y \vee x \cdot z \\
(x \vee y) \cdot z=x \cdot z \vee y \cdot z \\
x \backslash(y \wedge z)=x \backslash y \wedge x \backslash z \\
(x \wedge y) / z=x / z \wedge y / z \\
x /(y \vee z)=x / y \wedge x / z \\
(x \vee y) \backslash z=x \backslash z \wedge y \backslash z
\end{array}
$$

And some don't (in general)

$$
\begin{array}{r}
x \cdot(y \wedge z)=x \cdot y \wedge x \cdot z \\
(x \wedge y) \cdot z=x \cdot z \wedge y \cdot z \\
x \backslash(y \vee z)=x \backslash y \vee x \backslash z \\
(x \vee y) / z=x / z \vee y / z \\
(x \wedge y) \backslash z=x \backslash z \vee y \backslash z \\
x /(y \wedge z)=x / y \vee x / z
\end{array}
$$

But some distributivity laws can

- follow from a combination of others
- under special circumstances
- Fussner, W., Jipsen, P. Distributive laws in residuated binars. Algebra Univers. 80, 54 (2019)

Example from cited paper

If $(x \wedge y) \vee z=(x \wedge z) \vee(y \wedge z)$ (distributive lattice) then:

$$
\begin{aligned}
(x \vee y) / z & =x / z \vee y / z \\
(x \wedge y) \backslash z & =x \backslash z \vee y \backslash z \\
\Longrightarrow x \backslash(y \vee z) & =x \backslash y \vee x \backslash z
\end{aligned}
$$

Non-example

If $(x \wedge y) \vee z=(x \wedge z) \vee(y \wedge z)$ then there is a counter-example for:

$$
\begin{array}{r}
x \cdot(y \wedge z)=x \cdot y \wedge x \cdot z \\
(x \wedge y) \cdot z=x \cdot z \wedge y \cdot z \\
\Longrightarrow x \backslash(y \vee z)=x \backslash y \vee x \backslash z
\end{array}
$$

Open Problem

In a residuated binar which of the following distributivity laws follows from some combination of others:

$$
\begin{array}{r}
x \cdot(y \wedge z)=x \cdot y \wedge x \cdot z \\
(x \wedge y) \cdot z=x \cdot z \wedge y \cdot z \\
x \backslash(y \vee z)=x \backslash y \vee x \backslash z \\
(x \vee y) / z=x / z \vee y / z \\
(x \wedge y) \backslash z=x \backslash z \vee y \backslash z \\
x /(y \wedge z)=x / y \vee x / z \tag{6}
\end{array}
$$

Problem

- 6 non-trivial distributivity laws
- $\left(2^{5}-1\right) \times 6$ of possible implications between them
- adding: • commutativity/associativity, lattice modularity, involution operation, ...
- often a counter-examples exists

Why so many?

- if $1,2,3,4,5$ doesn not imply 6
- then neither $1,2,3,4$ implies 6
- but we don't know what is true in the beginning
- finding counter-examples for more general statements is harder

Task

- thousands of hypotheses
- counter-examples structure is important for understanding
- we want to check as many hypotheses as possible
- starting with the least general ones

How to find provable hypotheses?

- encode the hypothsis into some formal language
- give it to one's favourite counter-examples finder:
- Mace4, Paradox, Kodkod, ...
- wait for a couple of minutes and repeat

How to find provable hypotheses?

- give it to one's favourite counter-examples finder which one?
- wait for a couple of minutes why hours or days?
- repeat but we have thousands of candidates to check

How to find provable hypotheses: Isabelle Platform

- uses a relatively simple language for encoding theories
- provides an interface (through Kodkod) to SMT solvers
- Isabelle server runs solving tasks in parallel

Isabelle

- is overall great but
- is written in StandardML and Scala (I used Python for generating theory files)
- it's server has only TCP API (not even HTTP!)

Solution

- write a Python client to Isabelle server
- write scrips for generating and processing Isabelle theory files
- parse Isabelle server log to produce tikz representation of lattice reducts of counter-examples
- come up with new hypotheses to prove

Isabelle theory file generated by Python script

```
theory T88
imports Main
begin
lemma "(
(\<forall> x::nat. \<forall> y::nat. meet(x, y) = meet(y, x)) &
(\<forall> x::nat. \<forall> y::nat. join(x, y) = join(y, x)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, meet(y, z)) = meet(meet(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(x, join(y, z)) = join(join(x, y), z)) &
(\<forall> x::nat. \<forall> y::nat. meet(x, join(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. join(x, meet(x, y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, join(y, z)) = join(mult(x, y), mult(x, z))
\<<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(join(x, y), z) = join(mult(x, z), mult(y, z))
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(x, over(join(mult(x, y), z), y)) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. meet(y, undr(x, join(mult(x, y), z))) = y) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(over(x, y), y), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. join(mult(y, undr(y, x)), x) = x) &
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(x, meet(y, z)) = meet(mult(x, y), mult(x, z))
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. mult(meet(x, y), z) = meet(mult(x, z), mult(y, z))
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. over(join(x, y), z) = join(over(x, z), over(y, z))
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(meet(x, y), z) = join(undr(x, z), undr(y, z))
(\<forall> x::nat. \<forall> y::nat. invo(join(x, y)) = meet(invo(x), invo(y))) &
(\<forall> x::nat. \<forall> y::nat. invo(meet(x, y)) = join(invo(x), invo(y))) &
(\<forall> x::nat. invo(invo(x)) = x)
) \<longrightarrow>
(\<forall> x::nat. \<forall> y::nat. \<forall> z::nat. undr(x, join(y, z)) = join(undr(x, y), undr(x, z))
"
nitpick[card nat=10,timeout=86400]
oops
end
```


Isabelle server response

155

NOTE \{"percentage":100,
"task":"1efed98a-801b-4bc8-9ea1-50b38d1d966d", "message":
"theory Draft.T92 100\%","kind":"writeln","session":"", "theory": "Draft.T92"\}
215033
FINISHED \{"ok":true,"errors": [],"nodes": [\{"messages" : [\{"kind":"writeln","message":"Nitpicking formula...", "pos":\{"line":26,"offset":1347,"end_offset":1354,"file":
"/workdir/boris/projects/residuated-binars/residuated_bina
\}\},\{"kind":"writeln", "message":
"Warning: The conjecture either trivially holds for the gir , "pos":\{"line": 26,"offset":1347,"end_offset":1354,"file": "/workdir/boris/projects/residuated-binars/residuated_bina \}\},\{"kind":"writeln","message":"Nitpick found a potentially Free variables: $\backslash n \quad$ invo $=\backslash n \quad\left(\backslash \backslash<l a m b d a>x . ~ _\right) \backslash n$ (0 := 7, $1:=6,2:=5,3:=4,4:=3,5:=2,6:=1,7$ join $=\backslash \mathrm{n} \quad(\backslash \backslash<l a m b d a>x ., ~) \backslash n \quad \square((0,0):=0,(0, \triangleright 1)$

\cdot	\top	a	b	c	d	e	f	g	h	\perp
\top	\top	g	\top	\top	\top	g	g	a	g	\perp
a	a	\perp	a	a	a	\perp	\perp	a	\perp	\perp
b	\top	g	\top	\top	\top	g	g	a	g	\perp
c	d	g	d	d	d	g	g	h	g	\perp
d	d	g	d	d	d	g	g	h	g	\perp
e	a	\perp	a	a	a	\perp	\perp	a	\perp	\perp
f	a	\perp	a	a	a	\perp	\perp	a	\perp	\perp
g	\perp	g	\perp							
h	h	\perp	h	h	h	\perp	\perp	h	\perp	\perp
\perp										

Results

In a residuated binar (with or without involution), none of the following distributivity laws follows from any combination of others:

$$
\begin{array}{r}
x \cdot(y \wedge z)=x \cdot y \wedge x \cdot z \\
(x \wedge y) \cdot z=x \cdot z \wedge y \cdot z \\
x \backslash(y \vee z)=x \backslash y \vee x \backslash z \\
(x \vee y) / z=x / z \vee y / z \\
(x \wedge y) \backslash z=x \backslash z \vee y \backslash z \\
x /(y \wedge z)=x / y \vee x / z
\end{array}
$$

Results

- all examples in the general case are non-modular
- for modular case Isabelle fails to find counter-examples of size up to 14 for some assumptions
- results from Fussner\&Jipsen paper might be generalisable to the modular case

Was it easy?

- running on three Linux machines, the largest having 180 CPU cores (Intel ${ }^{\circledR}$ Xeon ${ }^{\circledR}$ Gold 62543.10 GHz) and 832 GB of RAM
- about two weeks of wall-time computations
- filing a kernel bug report to one of the servers' sellers
- the largest model is of cardinality 10

Conclusions

- sometimes using newer software helps solving open problems in mathematics
- collaboration of mathematicians and computer scientists might be fruitful
- ITPs are not only for formalizations

Thank you for your attention!

Discussion time!

