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Aussois



Background

How to refute the following formula?

∀x f (x) > x ∧ ∀y f (y) < 0

x 7→ 0

y 7→ 0

Then ground formula f (0) > 0 ∧ f (0) < 0 cannot be satisfied.
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Background

Schematic of the SMT solver working with quantifiers:



Background

• Herbrand’s theorem guarantees that for an unsatisfiable
first-order logic formula, finitely many instantiations are
sufficient to obtain an unsatisfiable ground part, and, these
instantiations only need to use the Herbrand universe.

• A stronger variant of Herbrand’s theorem that enables a more
practical method for quantifier instantiation. It is sufficient to
consider only the terms already within the ground part of the
formula generated so far.

• This insight leads to the enumerative instantiation strategy.

• For a formula G ∧ ∀x1 . . . xn φ, with G ground, collect all
ground terms T in G and strengthen G by an instantiation of
φ by an n-tuple t1, . . . , tn with ti ∈ T ; repeat the process until
G becomes unsatisfiable or until resources are exhausted. The
tuples are enumerated systematically to guarantee fairness.



Background

Let’s consider the following conjunctive set of formulas within the
logic of uninterpreted functions and linear integer arithmetic
(UFLIA).

{f (d) > f (d + 2), c ≤ 0 ∨ ∀x f (x) < f (x + 1)︸ ︷︷ ︸
q

}

Let’s assume that the ground solver decided that c ≤ 0 is false.

ground formula additional ground terms
{c ≤ 0 ∨ q, f (d) > f (d + 2)} {d , d + 2, c, 0, f (d), f (d + 2)}
{q ⇒ f (d) < f (d + 1)} {d + 1, f (d + 1)}
{q ⇒ f (d + 1) < f (d + 2)} {d + 2, f (d + 2)}
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Background
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Can machine learning make SMT solvers more efficient in
the context of quantifiers?



Machine learning guidance

Schematic of the SMT solver with machine learning guidance for
quantifier instantiation.



Machine learning guidance

• Instead of ordering terms according to its age, we order them
according to a scoring function S : F → [0, 1].

• This function is parametrized as a machine-learning model –
LightGBM.

• It takes as its argument the features F (φ, t) of a pair of a
quantified sub-formula φ and the candidate term t which may
be used for instantiation.

• It is trained on positive and negative examples:
• (φ, t) is a positive if φ instantiated with t appeared in a proof
• (φ, t) is a negative if instantiating φ with t was tried, but it

did not appear in a proof.



Features

• bag-of-words (BOW) features:
• we use kinds of symbols determined by CVC5 (like: variable,

skolem, not, and, plus, forall, and many others)
• we count how many times a given kind of symbol appeared
• for example: BOW(∀x 2 + x = skl1 + 3) =
{forall : 1, variable: 1, const : 2, skolem : 1, plus : 2}

• additional features:
• varFrequency
• age
• phase
• relevant
• depth
• tried

Given an example (φ, t), its final feature representation is a vector

BOW(φ) + BOW(t) + additional features

.



Data for evaluation

Three SMT-LIB benchmarks:

• UFLIA Sledgehammer

• UFNIA Sledgehammer

• UFLIA Boogie



Experimental setting

• One theorem may have multiple different proofs.

• One proof may result from multiple different proof-searches.

• This makes the notion of positive / negative example vague.



Experimental setting

Having a set of SMT problems, one can have two similar – but not
equivalent – goals, which are equally important:

1. the cumulative goal : solve automatically as many of the
problems as possible, running the ML-guided solver multiple
times over them and improving it by training the ML model
on data collected across the runs,

2. the generalization goal : use the available problems to train a
single ML-guided solver which performs well on new, unseen
problems.



Looping training and evaluation

Algorithm 1 Solving-training loop with training/testing split.

Require: training problems: Ptrain, testing problems: Ptest, number
of iterations: N, grid of hyper-parameters: Hgrid

1: M ← {}
2: Dtrain ← {}
3: for i ← 0 to N do
4: Ltrain ← Solve(Ptrain,M)
5: Ltest ← Solve(Ptest,M)
6: Dtrain ← Dtrain ∪ExtractTrainingExamples(Ltrain)
7: Hbest ← GridSearch(Dtrain,Hgrid)
8: M ← TrainModel(Dtrain,Hbest)



3 solvers compared in the experiments

1. Base solver: uses standard enumerative instantiation strategy

2. Randomized solver: like the base solver, but random 10% of
terms are swapped

3. ML-guided solver: like the base solver, but terms are ordered
according to ML-advice



Results

Instantiations made by the solvers for testing problems across
iterations of the evaluation:
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Results

Instantiations performed by the solvers
(each point refers to one testing problem):
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Results

Numbers of problems solved in the looping evaluation for three
benchmarks:
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Future work

• Finding more clever way of dealing with tuples of variables.

• Designing more informative features.



Thank you!


