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Abstract

Proof by induction plays a critical role in formal verification and mathematics at large.
However, its automation remains as one of the long-standing challenges in Computer Sci-
ence. To address this problem, we developed sem_ind. Given inductive problem, sem_ind
recommends what arguments to pass to the induct tactic. To improve the accuracy of
sem_ind, we introduced definitional quantifiers, a new kind of quantifiers that allow us to
investigate not only the syntactic structures of inductive problems but also the definitions
of relevant constants in a domain-agnostic style. Our evaluation shows that compared to
its predecessor sem_ind improves the accuracy of recommendation from 20.1% to 38.2% for
the most promising candidates within 5.0 seconds of timeout while decreasing the median
value of execution time from 2.79 seconds to 1.06 seconds.

1 Proof by Induction in Isabelle/HOL

The automation of proof by induction is a long-standing challenge in Computer Science. To
handle inductive problems, Isabelle [7] offers the induct tactics. When using the induct
tactic, however, users have to manually specify its arguments by answering the following three
questions:

• On which terms do they apply induction?
• Which variables do they pass to the arbitrary field for variable generalisations?
• Which induction rule do they pass to the rule field?

Unfortunately, answering these questions requires users to investigate problems at hand.
To automate this process, we previously developed smart_induct [4] and PSL [6]. PSL is a
domain-specific language, which allows users to describe proof search strategies. Based on such
strategies, PSL’s interpreter tries to identify good arguments for the induct tactic by executing
a possibly expensive proof search. The drawback of this approach is that PSL cannot make
any recommendations at all if the interpreter fails to complete a proof search. smart_induct
complements PSL’s limitation by suggesting promising arguments for the induct tactic without
relying on a proof search but based on heuristics encoded in a language called LiFtEr [1]. Our
previous evaluations, however, identifies two problems of smart_induct:

• smart_induct tends to be unreliable when variable generalisation is essential.
• smart_induct can be quite slow for some inductive problems.
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goal

Step 1: syntax-directed candidate construction

Step 2: filtering out unpromising tactics

Step 3: rank tactics using SeLFiE heuristics
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Step 5: rank tactics using SeLFiE heuristics for generalisation

Step 4: construct generalisation variables
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Figure 1: Overview of sem_ind.

To overcome these limitations, we developed
sem_ind. Figure 1 presents the overall archi-
tecture of sem_ind: sem_ind firstly produces
a small number of induction candidates, using
the syntactic structure of problems as a hint.
After filtering out candidates that do not even
produce sub-goals, sem_ind ranks remain-
ing candidates, using induction heuristics en-
coded in a domain-specific language called
SeLFiE. Then, out of the five most promising
candidates, sem_ind produces candidates in-
cluding generalisation and ranks them using
generalisation heuristics written in SeLFiE.

Table 1 shows how often sem_ind pro-
duces recommendations within each timeout
when applied to 1,095 inductive problems
from 22 Isabelle theory files. The first row la-
belled as “new” shows the results of sem_ind, while the second row labelled as “old” shows those
of smart_induct. This table makes it clear that sem_ind performs faster than smart_induct.
This improvement is achieved mainly by the aforementioned architecture, which separates two
problems: on what term we should apply induction, and which variables we should generalise
while applying induction. This separation allows for the aggressive pruning of less promising
candidates for each step, leading to a fewer number of candidates that sem_ind has to analyse
using SeLFiE heuristics.

Table 2, on the other hand, shows how often the recommendations of each tool coincide
with the choices of human engineers for the same problem set. For example, Table 2 shows
59.3% in the first row for “top 3”. This means that for 59.3% problems the choices of human
engineers appear among the three most promising candidates suggested by sem_ind. Thus, this
table corroborates that sem_ind is smarter than smart_induct, producing more accurate sug-
gestions. The main reason for this improved accuracy is its implementation language, SeLFiE.
SeLFiE provides definitional quantifiers, ∃def and ∀def , which allow us to encode heuristics that
analyse relevant definitions in a domain-agnostic style. Conceptually, a definitional quantifier
checks if certain properties hold for all or some of the clauses defining a given constant. For in-
stance, ∃def (constant, heuristic, arguments), checks if there exists a clause defining constant,
for which heuristic holds when applied to arguments.

3 Conclusion
We presented sem_ind and its implementation language SeLFiE. More comprehensive explana-
tions are provided in our drafts [2, 3]. sem_ind is fully integrated into the Isabelle ecosystem
and freely available at our GitHub repository [5].

tool 0.2s 0.5s 1.0s 5.0s
new 8.8% 24.7% 47.8% 86.8%
old 0.0% 3.5% 16.9% 70.2%

Table 1: Return Rates for Five Timeouts.

tool top 1 top 3 top 5 top 10
new 38.2% 59.3% 64.5% 72.7%
old 20.1% 42.8% 48.5% 55.3%

Table 2: Coincidence Rates
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