Designing a Theorem Prover for Reinforcement Learning
and Neural Guidance

Jonathan Laurent! and André Platzer!

Carnegie Mellon University, Pittsburgh, United States
{jonathan.laurent,aplatzer}@cs.cmu.edu

Abstract

We discuss the design of Looprl, an experimental interactive theorem prover for loop
invariant synthesis that has been optimized from the ground-up for a clean integration of
theorem proving with reinforcement learning and neural guidance.

Context and motivation Augmenting tactic-based interactive theorem provers with neural
guidance has been the focus of increased attention in recent years [7, 21, 2, 10, 6]. The domi-
nant approach consists in using imitation learning on large corpora of formalized mathematics.
However, despite recent efforts involving self-supervised pre-training [6] or data-augmentation
[19], this approach is still limited by the amount of available human-produced training data.

Thus, a promising direction is to use reinforcement learning to train learning agents through
sheer interactions with the theorem prover and without resorting to human proofs [8, 3]. Cur-
riculum learning can be used to generate tasks of suitable difficulty for the learner [22]. Un-
fortunately, RL-based approaches tend to be computationally intensive and sample-inefficient,
which raises scalability challenges.

We introduce Looprl, an interactive theorem prover for loop invariant synthesis for programs
that is designed from the ground-up for effective neural guidance and which exposes an action
space that allows efficient exploration by a reinforcement learning agent.

Loop invariant synthesis Given an imperative program with a loop and a final assertion
that is to be proved, a loop invariant is a predicate that i) holds before the loop executes, ii) is
preserved by the loop body and iii) implies the subsequent assertion or postcondition when
assuming the negation of the loop guard. For example, in the program of Figure 1, a possible
invariant that would enable us to prove the final assertion (Line 8) isy >0Az > 1Az > y.
Loop invariant synthesis is an interesting benchmark for us to consider because it raises
many of the same challenges as general theorem-proving (e.g. formal reasoning, need for con-
jecturing...) while being contained enough to allow for meaningful experiments on limited
computing resources and interpretable failure modes. Moreover, it is a largely open problem
of great relevance to the verification community, with many natural extensions (e.g. program
repair, program synthesis...). Related work exists that uses deep reinforcement learning for
invariant synthesis [15, 16]. In the aforementioned work, the agent is trained from scratch on
every new problem, which typically takes hours. In comparison, our aim is to train an agent
that generalizes across tasks and can therefore solve new problems quickly once it is trained.

The Looprl prover Here are some key features of Looprl:

e Inducing search spaces with strategies: At the outermost level, the neural network
does not interact with a set of deterministic tactics. Rather, building on an idea from
Selsam [14, 13], the user can define nondeterministic strategies that induce search spaces
to be explored by the neural network (using a Search monad). This provides a flexible way
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to leverage domain knowledge into defining reduced action spaces that are more amenable
to the kind of semi-random exploration that is typical in reinforcement learning.

e Tight integration of proof and synthesis via abductive reasoning: For example,
a typical strategy (in the sense defined above) for discovering loop invariants [4, 5] is to
start considering the postcondition as an invariant and then try and prove it inductive.
If the attempt fails, one can look for a missing assumption that would make it hold and
suggest it as a new invariant candidate. (In reality, the default strategy of Looprl is
more general and also integrates refinements of function symbols along with some form
of forward reasoning.) This form of abductive reasoning is a key aspect of how humans
find proofs [20] and it has built-in support in Looprl.

e Tag-based proof guidance: At its core, Looprl provides an abduction tactic that
takes a formula as an input and returns either valid (if a proof is found) or otherwise
a weighted list of suggestions for missing assumptions (or symbol refinements). This
tactic is implemented using a rule-based rewriting system. Rewriting is guided by a cost
function that is implicitly defined by tags on parts of the input formula. These tags
are probabilistic and indicate how favorable it is to use a subformula in the proof, how
they should be used (e.g. as a contradictory assumption, for eliminating variable z...) and
with what level of certainty that prediction is made. Several factors make this architecture
especially well-suited for neural guidance: i) the costly operation of evaluating the neural
network only has to be performed once before search starts, ii) tagging the input formula
can be done efficiently in a single pass using a Transformer encoder [18] or a Graph Neural
Network and iii) the abduction tactic naturally leverages the uncertainty estimates given
by the neural network.

Note that all these ideas are general and thus potentially applicable beyond the problem of
invariant synthesis, which we are only considering here as an initial benchmark.

Learned agent Our agent is reminiscent of the AlphaZero algorithm [17], where a neural
network (here, a choice of a Transformer [18, 12] or of a Graph Neural Network [11]) is used
as a heuristic for Monte-Carlo Tree Search, which is iteratively improved as more experience
becomes available. Training tasks are generated using a simple curriculum-learning scheme
where random programs of increasing complexity are sampled. For each program, a random
assertion is sampled too for which no easy counterexample can be found and whose validity the
current network is uncertain about.

Project status and plans

e The Looprl theorem prover: We finished implementing the Looprl theorem prover
and wrote a simple user interface (Figure 1) for testing purposes. Using this interface
and providing manual guidance, we solved a large sample of problems from the invariant-
synthesis track of the SyGUS 2017 competition [1].

e AlphaZero.jl: In the context of this project, we have released a novel open-source im-
plementation [9] of Deepmind’s AlphaZero algorithm [17] written in the Julia language.
This implementation is consistently one to two orders of magnitude faster than competing
Python implementations, while being equally simple and flexible.

e By AITP 2021: We plan to implement the AlphaZero-like agent mentioned earlier and
evaluate it on the SyGUS 2017 benchmark also used in [15, 16].
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A Looprl Screenshot

1 Proof obligations:
0
3 while y < 1000: 1>=20
invariant x >=y y<1000 & x >=y > x + y>=y + 1
X=X+Yy

y=y+1
assert x >= y
8 assert x >=y

>>> set L3 irrelevant 0.8

Figure 1: A screenshot of the Looprl user interface. Here, the user is manually adding a tag
that indicates that the loop guard is likely irrelevant in proving the inductivity of the current
invariant candidate.
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