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Automated theorem proving has come a long way in the last few decades. Multiple auto-
mated theorem provers (ATPs) have been developed, such as E [15] and Vampire [13] in the
case of first-order logic (FOL). For higher-order logic, automated tools exist for interactive the-
orem provers (ITPs), such as Sledgehammer [11] (for Isabelle [18]), TacticToe [9] (for HOL4
[16]), CoqHammer [7] and Tactician [4] (both for Coq [3]). The effectiveness, however, of these
automated tools is still not as desirable as one would hope. Paulson and Blanchette show in
their experiments that Sledgehammer only managed to automate 52% of the proofs from seven
selected Isabelle theories [12]. On the brighter side, combinations of different automated tools
yield better results than the tools individually. In the experiments run by the developers of
Proverbot9001 [14], the combination of CoqHammer and their tool is 32% more effective in
automated proving than the tool itself. Furthermore, they concluded that CoqGym [20] and
their approaches are complementary as both can complete proofs which the other cannot. Thus,
this raises our driving challenge: to design a system architecture that allows for the effective
collaboration between multiple intelligent agents (humans and AI systems) towards producing
formally correct proofs and programs.

Our approach. We propose a blockchain-based protocol for proof and program synthesis
through some ITP such as Coq. This approach allows both for the design of open problems
via intents which have not been formally completed as well as for the storage of partial proofs.
Using token-based mechanisms, we incentivize continued participation and completion of partial
proofs. Furthermore, we encourage the development and application of generic proof tactics
which are useful in completing numerous diverse theorems/programs.

Our architecture instantiates a top-down approach to proving theorems: provers publish
partial proofs, formally correct up to specific unproven lemmas. To coordinate and distribute
claims and partial proofs, the architecture features a programmable blockchain. Claims of first
authorship are verified with time-stamped records on the chain. Smart contracts define com-
plex incentive schemes to reward multiple collaborators, e.g., depending on how peers evaluate
their respective contributions. Blockchain data is highly structured and available, ideal for AI
agents to iterate over and attempt to solve unproven claims, possibly in collaboration with
one another. Other than storing multiple copies of mathematical proofs and formally verified
programs at different nodes, the decentralization critically allows for the emergence and persis-
tence of common knowledge [8], which mirrors the process of academic publishing and public
presentation of results.

Sketch of the system architecture

We assume the availability of a public, programmable blockchain, where smart contracts are
deployed. We call prover an account (or address) on the blockchain participating in the proto-
col. A human or AI participant may operate several prover accounts, although for simplicity
we consider the case where one entity corresponds to one prover only.
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Data Layer

Provers add time-stamped records of contributions on the blockchain. The record is a sim-
ple data structure registered in the blockchain’s state. Minimally, the record contains (a) the
prover’s address and (b) a reference to the contribution. In our protocol, the contribution is
a Coq file containing additional metadata. Metadata attributes include the contribution type,
among three distinct possibilities: (1) a conjecture (proposition/type with empty proof), (2)
partial proof to some earlier conjecture (leaving sub-conjectures for other agents to complete),
or (3) completed mathematical objects such as new definitions, propositions and tactics. The
metadata also includes references to previous relevant contributions (e.g., “imports”). While
records are stored on the blockchain, contributions are stored on a decentralized file storage
infrastructure, such as IPFS [2], with the hash of the contents of the file used as the contribu-
tion’s reference in its corresponding record.

Client Layer

Provers access records and contributions via the client layer. A client is an interface respon-
sible for downloading records and contributions in a structured manner, e.g., by following the
directed acyclic graph (DAG) of contributions built by imports declared in the metadata of a
single contribution. While downloading contributions, clients perform validity checks that can-
not be handled on the data layer, e.g., check that the Coq code is syntactically correct. Invalid
contributions may either be flagged by the client or disregarded entirely. A client interface
may be built, e.g., as a plug-in to popular Coq code editors, allowing provers to add struc-
tured metadata as well as publishing records and contributions to the blockchain. Additionally,
the interface would present data derived from the incentive layer, introduced in the next section.

Incentive Layer

Value representation is handled natively by public, programmable blockchains, allowing the
protocol to maintain for each prover a balance denominated in tokens. Our protocol uses
incentives in a flexible manner: any prover can deploy some incentive mechanism as a smart
contract, as long as the mechanism makes reference to contribution records. For instance,
an organization can deploy a smart contract containing a reward for the proof of a theorem.
The smart contract allows one prover only, e.g., a registered prover (“judge”) belonging to the
organization, to declare a previously published record as the winner of the prize, after which
the balance of the winner is incremented with the prize tokens. The decision to offer the prize
may be up to a vote by a quorum of provers in the organization, or provers who were certified
by another set of provers as having made significant contributions in the past (such mechanisms
“seed” an initial set who is responsible for co-opting new members, growing over time). The
quorum could also split the reward via some allocation rule to incentivize the contribution of
partial proofs.

To score contributions, different approaches could explore distinct trade-offs between human
input and contextual scoring. For example, one approach could deem a contribution valuable
whenever some index of its centrality within the contribution DAG is high (e.g., PageRank [5]).
Another approach is to rank a contribution as more valuable if there are more provers declare
that it is. For instance, Token-Curated Registries (TCRs) [10, 1] incentivize participants to
vote and maintain a list according to some agreed upon criteria.
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Comparison with related works

There are several prior projects such Qeditas [19], Mathcoin [17] and Proofgold [6] that dis-
cussed on how we could use blockchain mechanism to tie sources of formalized mathematics
together in a decentralized way. To encourage participation, they discuss ideas such as reward-
ing creators with ownership rights and/or some form of currency. What distinguishes our idea
from them is the proposal of having smart contracts to introduce incentive mechanisms. With
appropriate incentive mechanism in place, we could gamify the process of formalizing mathe-
matics and award contributors with virtual tokens for partial or completed results they have
done. A particular importance is the fact that we can design complex incentive mechanisms
that can incentivise multi-agents collaboration. The balance of these tokens can either be ex-
changed for real-life currency (e.g. US dollars) or be used to measure each mathematician’s or
computer scientist’s contribution to formalized mathematics.

During AITP’21, we would be presenting a proof of concept to see how different formalized
proofs of a sorting specification written in the Coq proof assistant can be generated from
human-AI collaboration via a blockchain mechanism. We would like to gather feedback about
our approach and discuss other techniques that may suit this framework.
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