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1 Introduction

We present ongoing work of comparing several different decision tree learning methods on
predicting tactics for proof states in Coq [5] by grasping knowledge from preceding human-
written proofs. The work is based on Tactician[1], a plugin enabling proof automation for Coq.
The authors use Tactician to extract features from the abstract syntax trees of proof states in
the form of term walks of length one and two. We apply Tactician to record all the proof states
(253, 538) and respective tactics in the Coq standard library and randomly choose 1% (2, 530) as
the evaluation data. Three algorithms are implemented: random forests and gradient boosted
trees working on binary learning with negative examples and multilabel regression. Finally, we
compare the results of the decision tree models and the Tactician’s original method, k-nearest
neighbors (k-NN).

2 Tactic Prediction Models

After establishing the dataset of state features and tactics as outlined above, we can apply ma-
chine learning algorithms for tactic prediction. The naive k-NN simply computes the similarity
between proof state features by the Jaccard index [4] to find likely tactics.

Random forests, a popular machine learning method, provide predictions by voting from
multitude decision trees. Typically, random forests will not update the structure after training.
Since grasping local knowledge is essential for Tactician, we take the inspiration from [3] and
implement an online version here [6] capable of incremental optimization. When a new training
instance is passed to a leaf of the decision tree, we split the leaf and create a new decision node
with two successive leaves. Under a certain size limitation, a new tree grows in the forests with
probability 1

n where n is the current tree number. To make predictions for a given example, it
should be passed to the respective leaves (denoting a tactic to be predicted) of all the trees by
the decision rules, and the tactics are ranked by their occurring frequency in the pointed leaves.

Gradient boosted trees apply boosting techniques, appropriate combinations of weak base
learners, to construct a powerful learner, and XGBoost[2] is such a popular library. On the
binary regression setting, XGBoost receives (f, t) where f denotes the features of the proof state,
and t represents the hash of the corresponding tactic in the Coq library. The input is labeled 0
or 1 according to the tactic being advantageous or not for the proof state. A tactic for a proof
state gets a positive label if it is exactly the one applied to the state in the library. In contrast,
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negative tactics are the elements in the tactic space and differ from the positive instance. We
apply k-NN to predict tactics for a state in the library by learning from the preceding states
and arbitrarily select a subset from the best-100 predictions as the negative instances. While
predicting tactics for a certain state, we first preselect the top-100 k-NN predictions. Then,
we use the XGBoost model to obtain scores for each tactic and return tactics by the order of
the corresponding scores. The input to XGBoost on multilabel regression is simply f with the
respective positive tactic of the state as the label, which builds an individual regressor for each
label. Every label’s regressor performs binary regression on two kinds of data: the proof states
with the same label (tactic) applied and the others. For a given example, each tree model
calculates a score, and we predict the tactics related to the models in score order.

3 Experimental Evaluation

The online random forests learn from all the previous states and dynamically update the struc-
ture during the prediction. Since the introduced XGBoost algorithms are offline, we build an
individual model for each state while performing experiments. To speed up the XGBoost eval-
uation, we merely provide the previous 1, 000 proof states encountered before the current proof
state for training.

Figure 3 depicts the accuracy of the presented machine learning methods. The k-NN always
has the lowest accuracy rates. In the beginning, the XGBoost’s multilabel regression performs
best, while the random forests surpass others later. The binary regression setting is much
worse than the other decision tree approaches for all the k. This indicates that we need better
semantic characterizations of tactics instead of the naive hash.
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ban. Online machine learning techniques for coq: A comparison. arXiv preprint arXiv:2104.05207,
2021.

3


	Introduction
	Tactic Prediction Models
	Experimental Evaluation

