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1 Introduction.

Solving the problem of understanding and creating mathematics using natural mathematical
language – the mixture of symbolic and natural language used by humans – is a path towards
developing agents capable of reasoning. The mixture of symbolic and natural text in infor-
mal mathematics, along with the existence of a formal counterpart, offers a unique setting
for studying reasoning that complements research involving natural language alone or purely
within a formal system. Moreover, systems that operate on informal mathematical text have
applications in education and scientific discovery [2, 5, 9], while bridging informal and formal
mathematics can be a key driver of progress in automated reasoning [10].

This talk will discuss NaturalProofs, a multi-domain corpus of mathematical statements
and their proofs, written in natural mathematical language. NaturalProofs consists of 32k
theorem statements and proofs, 14k definitions, and 2k other types of pages (e.g. axioms,
corollaries) derived from three domains: broad-coverage data from ProofWiki,1 an online com-
pendium of mathematical proofs written by a community of contributors; deep-coverage data
from the Stacks project,2 a collaborative web-based textbook of algebraic geometry; and low-
resource, real-world data from mathematics textbooks.3 NaturalProofs unifies these sources
in a common schema and is made publicly available as a resource to drive progress on tasks
involving informal mathematics, complementing existing work in this direction (e.g. [4, 11, 7]).

We use NaturalProofs for mathematical reference retrieval, an analogue of premise se-
lection [1, 4]: given a theorem x, retrieve the set of references y = {r1, . . . , r|y|} (theorems,
lemmas, definitions) that occur in its proof. As a bridge towards generative tasks, we consider
mathematical reference generation: given a theorem x generate the sequence of references in its
proof, y = (r1, . . . , r|y|), which requires determining the order and number of references.

In addition to standard in-distribution evaluation, we evaluate out-of-distribution, zero-shot
generalization to textbooks. We design an evaluation protocol that tests a system’s ability to
retrieve references for novel theorems in each setting, and benchmark methods based on large-
scale neural sequence models [3, 6], including a strong joint retrieval method and a sequential
variant for reference generation. The multiple informal domains, evaluation protocol, joint
retrieval model, and reference generation task differ from previous work on ProofWiki [4] and
formal [1, 8] premise selection.

We find that the neural methods are effective for in-domain retrieval compared to classi-
cal techniques, yet out-of-distribution generalization, leveraging symbolic mathematical con-
tent, and fully recovering a proof’s references remain as fundamental challenges. The
NaturalProofs data, code, and pretrained models are made publicly available.4

1https://proofwiki.org/
2https://stacks.math.columbia.edu/
3Introduction to Real Analysis by William F. Trench and Elementary Number Theory by William Stein.
4https://github.com/wellecks/naturalproofs.
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Figure 1: The pairwise, joint, and sequential methods.

1.1 Retrieval and generation methods.

As benchmark methods for our tasks, we introduce pairwise and joint retrieval methods, and
a sequential method trained for reference generation. Figure 1 illustrates the methods.

Pairwise model. The pairwise model scores a reference r against a theorem x using two
instances of BERT [3], sθ(x, r) = f thm

θ1
(x)>grefθ2 (r), as illustrated in Figure 1 (a). The pairwise

model is trained to contrast each positive reference with a set of negative references,

L(x, r,y−) = − log
exp(sθ(x, r))

exp(sθ(x, r)) +
∑

r−∈y−
exp(sθ(x, r−))

, (1)

where r is a reference that occurs in the proof of x, and y− is a set of in-batch negatives [6]
(Figure 1 (b)). This benchmark represents methods such as the dense passage retriever [6].

Joint model. The joint model scores all references in a single pass, pθ(·|x) = softmax (Rfθ(x)),
where R ∈ R|R|×d is a reference embedding matrix and fθ(x) ∈ Rd is a neural theorem encoder
(Figure 1 (d)). This model has the advantage of computing the loss denominator in Equation 1
over all references rather than a subset of negatives. However, it must learn implicit represen-
tations of each reference without observing reference contents, thus we populate its embedding
matrix using the pairwise reference encoder’s embeddings, R =

[
gref(r1); . . . ; gref(r|R|)

]
.

Retrieval evaluation. Given an input theorem x, every reference is scored to induce a
ranking r(1), . . . , r(|R|) (Figure 1 (c,d)). The ranked references are compared against the ground-
truth references from the proof of x using standard retrieval metrics, as well as whether all
ground-truth references were ranked in the top-k.

Sequential model. We use an autoregressive model, pθ(r1, . . . , r|y||x) =
∏|y|+1
t=1 pθ(rt|r<t,x),

where r|y|+1 is a special 〈eos〉 token denoting the end of the reference sequence (Figure 1 (e)).
The autoregressive model is trained to maximize the log-likelihood of ground-truth reference
sequences. Unlike the preceding retrieval models, this model predicts the order and total number
of references and can predict multiple occurrences of each reference.

For reference generation, beam search is used to generate a reference sequence ŷ =
(r̂1, . . . , r̂|ŷ| 〈eos〉). For retrieval, we populate a ranked list using generations {r̂1, . . . , r̂|ŷ|}
followed by references ordered according to the first step’s probabilities, pθ(r1|x).
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mAP R@10 Full@10
P
W

ik
i TF-IDF 6.19 10.27 4.14

BERT pair 16.82 23.73 7.31
BERT joint 36.75 42.45 20.35

S
ta

ck
s TF-IDF 13.64 25.46 18.94

BERT pair 20.93 37.43 30.03
BERT joint 28.32 39.10 31.96

Table 1: In-domain test performance on
mathematical reference retrieval, measured
with mean average precision (mAP), recall
(R@10) and full retrieval (Full@10) at 10.

mAP R@10 Full@10

R
A

TF-IDF 15.79 34.65 27.54
BERT pair 13.24 24.01 19.16
BERT joint 11.24 20.97 16.77

N
T

TF-IDF 16.42 39.62 30.00
BERT pair 15.12 41.51 35.00
BERT joint 15.85 41.51 35.00

Table 2: Zero-shot retrieval performance on
out-of-domain Real Analysis (RA) and Num-
ber Theory (NT) textbooks. We show results
for BERT models trained on ProofWiki.

Source ProofWiki
Theorem Category of Monoids is Category

Let Mon be the category of monoids.
Then Mon is a metacategory.

Rank Retrieved Reference (Joint Model)
1 Metacategory
2 Monoid
3 Identity Morphism
4 Identity Mapping is Right Identity
5 Identity Mapping is Left Identity
6 Associative
7 Identity (Abstract Algebra)/Two-Sided Identity
8 Composition of Mappings is Associative
9 Composition of Morphisms
10 Semigroup

Table 3: Example top-10 retrievals. Italicized
references are in the ground-truth proof.

Edit(↓) BLEU(↑) EM(↑) F1(↑)
*-set 58.51 7.18 18.09 97.04

*-multiset 58.09 16.68 19.23 100.0
*-halfseq 58.84 25.88 0.00 56.86

Joint 93.03 0.00 0.09 25.30
Sequential 84.30 5.48 3.78 25.61

Table 4: Reference generation performance
on ProofWiki. We show oracle benchmarks
for correctly predicting the first half of the
sequence (*-halfseq), the full multiset (*-
multiset) set (*-set) with random order. Met-
rics are computed on reference ids.

1.2 Main Results.

We overview key results here and provide further results and analysis in the talk. Table 1 shows
in-domain retrieval performance, meaning that each model was trained and evaluated on the
same domain. The BERT models substantially outperform the TF-IDF baseline, with the joint
model showing the best performance. Table 3 shows example retrievals from the joint model.

We find substantial room for future improvement on out-of-domain generalization and ref-
erence generation. As seen in Table 2, the BERT models trained on ProofWiki show worse or
similar retrieval performance as TF-IDF on the Real Analysis and Number Theory textbooks,
which we also found was the case for models trained on Stacks, or both ProofWiki and Stacks.

On reference generation (Table 4), the sequential model improves over using the top-5 predic-
tions from the retrieval model, yet falls behind oracle benchmarks that only predict the correct
set (*-set) or half of the correct sequence (*-halfseq), leaving much room for improvement.

1.3 Looking forward.

Overall, our results show both promising immediate use of neural models for in-domain retrieval,
and open challenges for the future. In the final part of the talk we discuss future work based
on using or extending NaturalProofs, as well as NLP techniques that may be of interest.
We hope to promote discussion about which tasks serve as meaningful proxies, the difficulty of
evaluation, and bridging informal and formal reasoning.
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