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Abstract

Machine learning (ML) has been applied to Automated Theorem Provers (ATPs) with much suc-
cess in recent years. However, representing first-order problems effectively as feature vectors remains
a major challenge. The performance of an ML approach is bounded by how well the features rep-
resent the problems and relates to the task at hand. In this paper, we investigate the effectiveness of
different problem representations for heuristic selection embeddings.

Heterogeneous Heuristic Selection and Optimisation
Heuristics are crucial for the success of ATPs, but finding good heuristics is challenging due to their
vast parameter space. Additionally, problems are heterogeneous which means that different heuristics
are required to solve different problems. Although there have been substantial work on automatically
discovering heuristics for first-order reasoning [9, 12, 15, 17], they do not consider the heterogeneous
nature of first-order problems.

To tackle this challenge, we developed a system for heterogeneous heuristic optimisation and
scheduling using machine learning (HOS-ML) [4], illustrated in Figure 1. The key idea behind HOS-ML
is to dynamically partition heterogeneous problem sets into homogeneous problem clusters and optimise
heuristics for each cluster separately using Bayesian hyper-parameter optimisation. While there is no
obvious way of grouping problems into homogeneous clusters, in [4] we proposed to compute clusters
through a combination of heuristics evaluation clustering and problem embedding.

Figure 1: HOS-ML: heuristic optimisation and
selection for heterogeneous problems.

HOS-ML consists of three phases. The first phase
discovers new heuristics by interleaving Bayesian
hyper-parameter optimisation for discovering promis-
ing heuristics and dynamic re-clustering into homoge-
neous problem clusters. The problems are iteratively
re-clustered into increasingly finer-grained clusters us-
ing heuristics evaluation feature vectors, which are ex-
tended as we discover new heuristics. In the second
phase, we use constraint programming to construct ef-
fective schedules for each homogeneous cluster based
on the discovered heuristics. The final phase deploys
cluster schedules on unseen problems.

A core component of HOS-ML, used in the final
phase, is the heuristics embedding model, as illustrated
by the node “Embed” in Figure 1. The heuristics em-
bedding model maps unseen problems into heuristics
evaluation vectors which in turn are used to assign
unseen problems into clusters and the corresponding
cluster schedules. The heuristics embedding model re-
lies on problem representation using feature vectors.
Such problem representations are useful in many ap-
plications but present a major challenge. In the following we experimented with different problem
representations in the context of HOS-ML.
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Problem Representation
A significant challenge is that many ML algorithms and models operate on numerical vectors known as
feature vectors, while ATPs deal with sets of formulas. Therefore, applying ML on the formula level
requires a feature vector representation of the formulas. However, there is no natural way for mapping
tree-structured first-order formulas into one-dimensional numerical vectors.

This impediment becomes even more apparent at the problem-level for tasks such as heuristic selec-
tion. Problems consists of sets of formulas and the feature vector must be able to create a representation
of this set. These challenges has typically been addressed by using more attainable feature sets at the
cost of information loss about the problem’s structure [1, 3, 5, 6, 14], or complex graph-based embed-
dings [8, 13] which can be difficult to train. The features have to contain some information related to
the task at hand. For embedding evaluation properties, this means that the features should reveal some
information about the behavioural properties of the problem, such that we can predict how a heuristic is
going to perform on it. In our experiments we considered three different feature types for this task:

• Syntactic Features: These include syntactic properties such as the number equational, Horn,
EPR, ground formulas, etc. We used 14 of such features. Such features create a good representa-
tion of the problem encoding but do not always reflect the algorithmic properties of formulas.

• Solver State Features: Syntactic features do not always reflect solver performance, additionally,
the original structure of a problem does not always correspond to the internal representation of
the problem in the ATP. To overcome this issues we consider solver state features. These fea-
tures consist of 155 solver statistics on the solvers’ key function calls during a run of the prover
including a range of simplification counts and timings. These features are computed by attempt-
ing a problem with a single heuristic for a low-timelimit and extracting the solver statistics after
termination. The advantage of solver state features is that they directly represent performance of
different components of the solver on the problem, in contrast to the syntactic features.

• Abstract Features: Symbol based representations can be effective [7,11] but have a drawback of
being sensitive to symbol renaming. One approach to this problem is to use embeddings based on
sophisticated graph neural networks [8,13]. In this paper we investigate a simpler approach using
signature abstraction by collapsing all signature symbols of the same type into an abstract sym-
bol of this type. Abstract symbols are shared across all problems resulting in common features
even when problems have different signatures. Signature abstraction preserve variable dependen-
cies and fragmentic structure of the formulas, e.g., of being EPR, Horn, ground, monadic, etc.
After creating an abstraction of the problem on the term, literal and clause level we represent
the abstracted problem as a bag-of-words. In our experiments we only used the abstract features
computed from the conjectures of the problems.

Problem Embedding
Let H be a set of heuristics, and sp the feature vector of p. The admissible embedding model E learns
the mapping between sp and the evaluation vector ep, which encodes the evaluation of the heuristics
in H on p. We use multi-label classification to construct the embedding model E . We separate the
multi-label classification task into |H| binary classification tasks, where a separate binary classification
model Mθ is trained for each heuristic θ in H . The final embedding model is defined as E(sp) =
(Mθ1(sp), · · · ,Mθ|H|(sp)), and can be used to predict the evaluation vector of any given problem. In
this paper, we predict which of the heuristics can solve a problem within a given time limit. We have
experimented with different binary classification models such as neural networks, SVMs and tree-based
model. In our experiments, the random forest model XGBoost [2] yielded the best performance.
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Syntactic Solver Abstract All

F1-Score 0.76 0.80 0.72 0.81
Geometric Accuracy 0.68 0.75 0.65 0.76
Hamming Loss 0.71 0.76 0.67 0.76

Table 1: The embedding performance of different problem representations on testing problems.

Evaluation

In this experiment we evaluated the quality of the three types of problem representations in the context
of HOS-ML: using syntactic, solver state and abstract features. The experiment consists of training the
heuristic embedding model for each feature set and evaluating it on a set of unseen test problems. To
obtain the experiment problems, we randomly sampled 4000 FOF and CNF problems from the TPTP
library (v7.4.0) [16]. Next, we extracted the features of each problem and removed all problems that
were solved during feature extraction or did not parse within a 1-second time limit.

To obtain the evaluation vectors we evaluated seventeen iProver [10] heuristics on the experiment
problems with a 300 second time limit. Further, we removed the problems that were unsolved by all
the heuristics as well as problems with all solutions below five seconds. This results in a problem
set consisting of challenging yet solvable problems. Finally, we divided the remaining problems into
training and testing sets with a 70-30 split.

We trained heuristic embedding models using XGBoost and different problem representations as de-
scribed in the previous section. From the results shown in Table 1, we observe that heuristic embedding
models can predict heuristic evaluation vectors with high accuracy. The solver state features outperform
the two other feature types. We also observe that the performance is slightly increased by combining all
three feature sets.

The heuristic embedding model was integrated in our HOS-ML implementation and we are currently
evaluating HOS-ML on the full TPTP.
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[8] Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, and Josef Urban. ENIGMA
anonymous: Symbol-independent inference guiding machine (system description). In Nicolas Peltier and

3



Heuristic Selection Holden, and Korovin

Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International Joint Conference, IJCAR
2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Sci-
ence, pages 448–463. Springer, 2020.

[9] Jan Jakubuv and Josef Urban. Blistrtune: hierarchical invention of theorem proving strategies. In Yves Bertot
and Viktor Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2017, Paris, France, pages 43–52. ACM, 2017.

[10] Konstantin Korovin. iProver - an instantiation-based theorem prover for first-order logic (system description).
In IJCAR 2008. Proceedings, pages 292–298, 2008.

[11] A. S. Kucik and K. Korovin. Premise selection with neural networks and distributed representation of features.
ArXiv e-prints, Abs/1807.10268, July 2018.
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