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1 Introduction of the main task

Automated theorem provers (ATPs) such as Vampire [4] are parameterized by a large number
of options that control the proof search heuristics. We call each valid combination of option
values of a given prover a strategy.

Given a prover A, a problem p ∈ P, and a strategy s ∈ S, the outcome of running A on
p using s often varies greatly depending on s. For example, an execution of Vampire with
the option --saturation algorithm fmb (finite model building) [4] searches for a model of
the problem and thus is only suitable for satisfiable problems, while the saturation algorithm
discount searches for a refutation by iterative inference and is especially suitable for unsat-
isfiable problems. On a problem set that contains both satisfiable and unsatisfiable problems,
strategies with the saturation algorithms fmb and discount are complementary.

Strategy scheduling [6] is a common way to utilize the complementarity of various strategies:
Given a problem, the prover runs a sequence of independent time-limited solution attempts,
each with a different strategy. A question naturally follows: Given a prover, a problem, and a
runtime budget, how can we find a strategy schedule that optimizes the expected performance
of the prover on the problem?

Several successful attempts have been explored to answer this and other closely related
questions. Vampire offers a so-called CASC mode [4], which chooses a schedule based on the
syntactic features of the input problem. MaLeS [5] first initializes a set of useful strategies
and then dynamically constructs a schedule of these strategies for an input problem. Given
a constraint satisfaction problem (CSP), CPhydra [2] schedules eight solvers optimally with
respect to a model trained in advance. Hydra [8] constructs a portfolio of strategies using an
arbitrary algorithm configurator (for example, Sequential Model-based Algorithm Configuration
(SMAC) [3]) and a portfolio builder (for example, SATzilla [9]).

In this proposed project, we intend to design and evaluate a method for data-parsimonious
construction of a strategy schedule: Given a prover and a distribution of problems, the method
should propose a schedule with a high expected probability of solving a problem from the input
distribution, while keeping the number of evaluations of the prover during the training small.

2 Solution outline

We propose to search for a good schedule by Sequential Model-Based Optimization (SMBO)
[3], that is, by iterating between fitting a regression model of runtime for a given problem and
strategy, and gathering additional training data.
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The training data consists of triples of the form (p, s, t), where p ∈ P is a problem, s ∈ S is a
strategy, and t ∈ R is a PAR101 [1] score of solving problem p with strategy s. Each problem is
represented by a vector of syntactic features, and each strategy is defined as a vector of numeric
and categorical values. Thus, it is possible to fit an empirical performance model π̂(T |P, S)
that predicts the PAR10 score T (as a random variable) for problem P and strategy S. We will
model the score by a random forest or a Gaussian process, which will allow us to capture the
uncertainty of the model. We denote the ground truth score distribution by π(T |P, S).

A schedule f : S → R≥0 allocates a time slice to each strategy. For practical reasons, we
assume that f allocates a nonzero time slice to only a finite number of strategies. When the
prover runs with a strategy s on problem p, the probability of failure to solve the problem in
time limit f(s) is π(T > f(s)|P = p, S = s). The probability that the schedule f fails to solve
problem p is

∏
s∈S,f(s)>0 π(T > f(s)|P = p, S = s). An optimum schedule f∗π,B minimizes the

expected number of unsolved problems C =
∑
p∈P

∏
s∈S,f(s)>0 π(T > f(s)|P = p, S = s) under

the runtime budget constraint
∑
s∈S,f(s)>0 f(s) ≤ B.

To sample a new data point, we choose a problem p and a strategy s in a way that combines
exploration and exploitation in the context of strategy scheduling using our current score model
π̂. The choice of the sampling scheme is the central research question of this project.

Once the training has finished, it is necessary to extract a schedule from the performance
model π̂. We plan to construct a complete schedule by splitting the time budget into slices, and
iteratively assigning each slice either to a new strategy found by local search, or to one of the
strategies that have already been assigned at least one slice, minimizing the expected number
of unsolved problems C greedily.

To assess the practical utility of the proposed system and especially the schedule-directed
sampling scheme, the system will be implemented and empirically compared with a combination
of the greedy schedule constructor Hydra [8] and the general-purpose algorithm configurator
SMAC [3], which uses a sampling scheme oriented at finding a single best strategy.

3 Discussion

The space of valid strategies is vast, which makes the search for useful strategies difficult
compared to the task of algorithm selection. The training problem set is typically large and
contains groups of similar problems. Generalizing across strategies and problems becomes
crucial to modeling the runtime in a data-efficient manner. Care must be taken not to overfit
to the training problem set.

The trained model may overfit to a particular first-order logic representation of the input
problem, while many equivalent representations of the problem exist. E.g., equivalent represen-
tations that differ only in the order of clauses, the order of literals in clauses, the orientation
of equalities, or the names of the symbols. Probabilistic modeling may allow us to capture this
ambiguity in a rigorous fashion.

The choice of the schedule quality criterion depends on the intended use. As an alternative
to the expected number of problems solved within the runtime budget, the expected time to
solve an arbitrary problem could be optimized.

The task of budgeted strategy scheduling is parameterized by the runtime budget B. A ques-
tion of potential interest is: Can a schedule construction scheme be trained without reference
to a particular runtime budget value?

1For a solution attempt, the penalized average runtime with a penalty factor of 10 (PAR10) is the actual
runtime in case the solution is found within the time limit, or 10 times the time limit in case the attempt times
out. Alternatively, survival analysis [7] may allow a more rigorous handling of timeouts.
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