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Parents and Clause Selection in E State-of-the-art automated theorem provers (ATP),
such as E [13, 14], Prover9 [10], and Vampire [11], are based on the saturation loop paradigm
and the given clause algorithm [12]. The input problem in first-order logic is translated into a
refutationally equivalent set of clauses. The ATP’s search for a contradiction maintains two sets
of clauses: processed (initially empty) and unprocessed (initially the input clauses). At each
step, one unprocessed clause is selected (given), and all of the possible inferences with all the
processed clauses are generated (typically using resolution, paramodulation, etc.), extending
the unprocessed clause set. The selected clause is then moved to the processed clause set.
An important invariant is that all mutual inferences among the processed clauses have been
computed at each step.

The selection of the “right” given clause is known to be an important choice-point vital
to the success of the proof search. E’s strategies consist of clause evaluation functions that
weigh and prioritize clauses for selection based on their symbols and properties. The ENIGMA
systems [2–7] apply various machine learning methods to learn how to select effective given
clauses from corpora of previous successful proof searches. Given clause selection does not give
the ENIGMA system complete control over the inferred clauses because all inferences between
the given clause and clauses in the processed clause set are computed. One reason this can be
important is that the ENIGMA systems tend to perform best when run in cooperation with a
strong E strategy where each selects half the clauses.

This talk discusses the implementation and experimentation of an ENIGMA system that
can “judge children by their parents” to filter out unnecessary inferences between the given
clause and processed clauses1 2. It is hoped that pruning the children of irresponsible parents
can improve E’s performance by allowing clause selection ENIGMA models and E strategies
greater focus.

Implementation There have been many versions of ENIGMA, and the latest is ENIGMA
Anonymous [4], which uses as the underlying machine learning method either Graph Neural
Networks or Gradient Boosted Decision Trees (GBDTs, implemented by LightGBM here) [1,9].
For the GBDTs, clauses are represented by fixed-length numerical vectors based on clause
syntax trees and names are anonymized by replacing symbol names with their arities. The goal
clauses and theory clauses (which include axioms) are merged to create the goal and theory
fixed-length vectors, which represent the clause’s context. The three are then concatenated to
create the feature vector.

∗Supported by the ERC Consolidator grant no. 649043 AI4REASON and by the Czech project AI&Reasoning
CZ.02.1.01/0.0/0.0/15 003/ 0000466 and the European Regional Development Fund.

1The code can be found at https://github.com/zariuq/eprover/tree/parentalguidance_frozen.
2And a pre-print of the full paper can be found at https://arxiv.org/abs/2107.06750
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Parental guidance can be generally defined as clause evaluation based on (the features of)
the parents of the clause (and possibly also on the clause itself). Two methods are evaluated:

1. Pfuse merges the feature vectors of the parent clauses into one vector, typically by simply
adding the feature counts.

2. Pcat concatenates the feature vectors of the parent clauses to preserve their information
in full.

The resulting parent feature vector is concatenated with the goal and theory vectors to create
the feature vector for parental guidance.

A GBDT based filter is inserted into E’s given clause algorithm so that clauses generated by
parents whose scores are below a chosen threshold do not get evaluated by E’s clause selection
heuristics. Because not all clauses are compatible to mate together, the clause’s parents are only
sent to the GBDT for evaluation after the clause has been generated and before simplifications
are performed. This leverages E’s efficient indexing. Because they have two parents, only
clauses generated by paramodulation (which implements resolution in E) are evaluated by the
parental guidance model. Filtered clauses are stored in the freezer set so that E can restore
them if the unprocessed clause set becomes empty, which avoids impairing the completeness of
the proof search.

Training The experiments are performed3 on a large benchmark of 57 880 problems4 originat-
ing from the Mizar Mathematical Library (MML) [8] exported to first-order logic by MPTP [15].
The data are split into 3 subsets5: (1) 52k problems for training, (2) 2896 problems for devel-
opment, and (3) 2896 problems for final evaluation (holdout).

First, the baseline in this work, called Dlarge, is a clause selection ENIGMA Anonymous
model that is trained over a dataset consisting of at most 3 proofs from ca. 36k problems in the
training set. The model consists of 150 decision trees of depth 40 with 2048 leaves and is the
model that performed best in some prior experiments. The training data for Dlarge consists of
clauses processed during a proof search: clauses appearing in the proof are labeled positive and
other clauses are negative. When run on the training set, Dlarge proves 28 495 problems with 30
seconds per problem.

To train parental guidance models, the parents of all generated clauses from the Dlarge run on
the trraining set are used. Two methods of classifying the good pairs of parents are considered:

1. Pproof classifies parents of only the proof clauses as positive and all other generated clauses
as negative.

2. Pgiven classifies parents of all processed (selected) clauses as positive and the unprocessed
generated clauses as negative.

The reasoning behind (2) is that if a clause is selected by a well-trained strategy, then it probably
should not be filtered: the aim is to remove only the worst of the children.

In the Pproof data, the pos-neg ratio, the ration of positive to negative clauses, is 1:192. This
is is experimentally reduced.

3On a server with 36 hyperthreading Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz cores and 755 GB of
memory.

4http://grid01.ciirc.cvut.cz/~mptp/1147/MPTP2/problems_small_consist.tar.gz
5http://grid01.ciirc.cvut.cz/~mptp/Mizar_eval_final_split
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Evaluation The parental guidance models are evaluated in combination with Dlarge for clause
selection with 30 seconds per problem. First a series of grid searches is done on a 300 problem
subset of the development set and then the results are compared with the baseline Dlarge on the
full development and holdout sets.

The following parameters are tested:

1. the pos-neg reduction ratio of negative to positive clauses,

2. the threshold by which to filter clauses,

3. the positive data classification scheme (Pproof vs Pgiven),

4. the LightGBM parameters (number of trees, maximum leaves per tree, and maximum
tree depth)

5. the parental feature vector creation method (Pfuse vs Pcat)

The final results can be seen in Table 1. Only considering proof clauses as positive examples
(Pproof) outperforms considering all selected clauses ()Pgiven), which is probably because the
data is cleaner and includes no confusing clauses. The low thresholds among the best models
indicate that parental guidance works best when only the most obviously irresponsible parents
are filtered. The cost of mistakenly filtering a necessary clause is high. Concatenating parent
clause features (Pcat) seems far superier to merging them (Pfuse). The improvement of 11.7%,
num163 more problems than the baseline, seems highly promising.

model threshold solved (D) solved (H)

Dlarge - 1397 1390

Pgiven
fuse +Dlarge 0.05 1411 (+1.0%) 1417 (+1.9%)

Pproof
fuse +Dlarge 0.1 1489 (+6.6%) 1486 (+6.9%)

Pcat+Dlarge 0.05 1571 (+12.4%) 1553 (+11.7%)

Table 1: Final 30s evaluation on development (D), and holdout (H) compared with Dlarge.
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