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Introduction We describe two iterative algorithms that combine high-level proof state eval-
uation and strategic reasoning decisions with guided low-level saturation-style proof search. For
each part, we learn the tasks using an efficient logic-aware graph neural network [14] (GNN)
recently integrated [8] into the ENIGMA [9, 4] guidance system of E [16, 17]. The general moti-
vation is to explore and develop more human-like reasoning architectures, i.e., systems combin-
ing various (Malarious [20]) AI components and learning/reasoning feedback loops, which are
(preferably) also competitive with ATPs in resource-controlled large-theory settings.1

GNN-ENIGMA The novelty previously introduced by GNN-ENIGMA compared to other
saturation provers is that the generated clauses are not ranked immediately and independently
of other clauses. Instead, they are judged by the GNN in larger batches and with respect to a
large number of already selected clauses – the context. The GNN estimates collectively the most
useful subset of the context and new clauses (queries) by several rounds of message passing,
which sees the connections between symbols, terms, literals, and clauses. The GNN is trained
on many previous proof searches, estimating which clauses will work together best.

Leapfrogging Our first method implements the idea that the graph-based evaluation of a
particular clause may significantly change as new clauses are produced and the context changes.
It corresponds to the human-based mathematical exploration, in which initial actions can be
done with relatively low confidence and following only uncertain hunches. After some amount of
initial exploration is done, clearer patterns often appear, allowing re-evaluation of the approach,
focusing on the most promising directions, and discarding of less useful ideas. In tableau-
based provers such as leanCoP [15] with a compact notion of a state, such methods can be
approximated in a reinforcement learning setting by the notion of big steps [12] in the Monte-
Carlo tree search (MCTS), implementing the standard explore/exploit paradigm [7]. In the
saturation setting, our proposed algorithm uses short standard saturation runs in the (low-
level) exploration phase, after which the set of processed (selected) clauses is re-evaluated and
a (high-level, strategic) decision on its most useful subset is made by the GNN. These two
phases are iterated in a procedure that we call leapfrogging.

In more detail, given a problem consisting of a set of initial clauses S = S0, a saturation-style
search (E/ENIGMA) is run on S with an abstract time limit. We may use a fixed limit (e.g.,
1000 nontrivial processed clauses) for all runs, or change (e.g. increase) the limits gradually. If
the initial run results in a proof or saturation within the limit, the algorithm is finished. If not,
we inspect the set of created clauses. We can inspect all generated clauses, or a smaller set,
such as the set of all processed clauses. So far, we used the latter because it is typically much
smaller and better suits our training methods. This (large) set is denoted as L0. Then we apply
a trained graph-based predictor to L0, which selects a smaller most promising subset of L0,
denoted as S1. We may or may not automatically include also the initial negated conjecture
clauses or the whole initial set S0 in S1. S1 is then used as an input to the next limited saturation
run of E/ENIGMA. This process is iterated, producing gradually sets Si and Li.

1Examples of such fair AI-style settings are the global resource limits used in the MPTP Challenge [13] and
CASC LTB [18]. Similarly for large ITP benchmarks, e.g., Mizar [11], Flyspeck [10], HOL4 [3], and Isabelle [2].
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Table 1: Four leapfrogging runs with different GNN-ENIGMAs

GNN-strategy original-60s-run leapfrogging (300-500-60s) union added-by-lfrg

G1 2711 2218 3370 659
G2 2516 2426 3393 877
G3 2655 2463 3512 857
G4 2477 2268 3276 799

Learning Reasoning Components Mathematical problems often have well-separated rea-
soning and computational components. Examples include numerical calculations, computing
derivatives and integrals, performing Boolean algebra in various settings, sequences of standard
rewriting and normalization operations in various algebraic theories, etc. Such components of
the larger problem can be often solved mostly in isolation from the other components, and only
their results are then used together to connect them and solve the larger problem. Human-
designed problem solving architectures addressing such decomposition include, e.g., SMT sys-
tems, systems such as MetiTarski [1], and a tactic-based learning-guided proof search in systems
such as TacticToe [6]. In all these systems, the component procedures or tactics are however
human-designed and (often painstakingly) human-implemented, with a lot of care both for the
components and for the algorithms that merge their results. This seems hard to scale to the
large number of complex algorithms and heuristics used in research-level mathematics.

We instead want to learn such targeted components, expressed as sets of clauses that perform
targeted reasoning and computation within the saturation framework.2 We also want to learn
the merging of the results of the components automatically. This is ambitious, but there seems
to be growing evidence that such targeted components are being learned in many iterations of
GNN-guided proving followed by retraining of the GNNs in our recent large iterative evaluation
over Mizar.3 In these experiments we have significantly extended our previously published
results [8],4 eventually automatically proving 73.5% (more than 40k) of the Mizar theorems.
In particular, there are many examples on the project’s Github page showing that the GNN is
learning to solve more and more involved computations in problems involving differentiation,
integration, boolean algebra, algebraic rewriting, etc. Our proposed Split and Merge algorithm
is therefore to (i) use the GNN to learn to identify interacting reasoning components, (ii) use
graph-based and clustering-based algorithms to split the set of clauses into components based
on the GNN predictions, (iii) run saturation on the components independently, (iv) possibly
merge the most important parts of the components, and (v) iterate. In more detail, we use a
modified version of our GNN to predict the graph of future clause interactions in (i), experiment
with several (soft) clustering methods for (ii), and again use the GNN to implement (iv).

Experiments The first leapfrogging experiment uses increasing limits on the set of processed
clauses (300 and 500) with the final run limited by CPU time (60s). This is done over 28k hard
Mizar problems with four differently parameterized GNNs (G1, . . . , G4). The methods indeed
achieve high complementarity to the original GNN strategies (Table 1), likely thanks to the
different context in which the GNNs see the clauses in the subsequent runs. In the first Split
and Merge experiment, we get 111 newly solved problems in the Split (component) phase out of
3000 hard problems unsolved in the initial standard saturation run (both using a limit of 1000
processed clauses). Then the Merge phase yields (with the same limit) additional 66 problems.5

Many of the new proofs indeed show frequent computational patterns (see Appendix A).

2Note that this is also fuzzier (and possibly easier) than related splitting by crisp (neural) conjecturing [5, 19].
3https://github.com/ai4reason/ATP_Proofs
4The publication of this large evaluation is in preparation.
5The full experimental details will be given in the talk.
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Appendix A Interesting Frequent Computational Patterns

Here we show three of the computationally looking Mizar proofs found automatically only by the
Split and Merge algorithm for theorems T16 FDIFF 5,6 T48 NEWTON,7 and T10 MATRIX 4.8

Figure 1: Differentiation – T16 FDIFF 5

6http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/fdiff_5.html#T16
7http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/newton.html#T48
8http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/matrix_4.html#T10
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Figure 2: Associativity of gcd by many rewrites – T48 NEWTON

Figure 3: Matrix manipulation – T10 MATRIX 4
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